Metamath Proof Explorer


Theorem iscbn

Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) Use isbn instead. (New usage is discouraged.)

Ref Expression
Hypotheses iscbn.x X = BaseSet U
iscbn.8 D = IndMet U
Assertion iscbn U CBan U NrmCVec D CMet X

Proof

Step Hyp Ref Expression
1 iscbn.x X = BaseSet U
2 iscbn.8 D = IndMet U
3 fveq2 u = U IndMet u = IndMet U
4 3 2 eqtr4di u = U IndMet u = D
5 fveq2 u = U BaseSet u = BaseSet U
6 5 1 eqtr4di u = U BaseSet u = X
7 6 fveq2d u = U CMet BaseSet u = CMet X
8 4 7 eleq12d u = U IndMet u CMet BaseSet u D CMet X
9 df-cbn CBan = u NrmCVec | IndMet u CMet BaseSet u
10 8 9 elrab2 U CBan U NrmCVec D CMet X