Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iscfil2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscfil | |
|
2 | xmetf | |
|
3 | 2 | ad3antrrr | |
4 | 3 | ffund | |
5 | filelss | |
|
6 | 5 | ad4ant24 | |
7 | xpss12 | |
|
8 | 6 6 7 | syl2anc | |
9 | 3 | fdmd | |
10 | 8 9 | sseqtrrd | |
11 | funimassov | |
|
12 | 4 10 11 | syl2anc | |
13 | 0xr | |
|
14 | 13 | a1i | |
15 | simpllr | |
|
16 | 15 | rpxrd | |
17 | simp-4l | |
|
18 | 6 | sselda | |
19 | 18 | adantrr | |
20 | 6 | sselda | |
21 | 20 | adantrl | |
22 | xmetcl | |
|
23 | 17 19 21 22 | syl3anc | |
24 | xmetge0 | |
|
25 | 17 19 21 24 | syl3anc | |
26 | elico1 | |
|
27 | df-3an | |
|
28 | 26 27 | bitrdi | |
29 | 28 | baibd | |
30 | 14 16 23 25 29 | syl22anc | |
31 | 30 | 2ralbidva | |
32 | 12 31 | bitrd | |
33 | 32 | rexbidva | |
34 | 33 | ralbidva | |
35 | 34 | pm5.32da | |
36 | 1 35 | bitrd | |