Metamath Proof Explorer


Theorem iscfilu

Description: The predicate " F is a Cauchy filter base on uniform space U ". (Contributed by Thierry Arnoux, 18-Nov-2017)

Ref Expression
Assertion iscfilu U UnifOn X F CauFilU U F fBas X v U a F a × a v

Proof

Step Hyp Ref Expression
1 elrnust U UnifOn X U ran UnifOn
2 unieq u = U u = U
3 2 dmeqd u = U dom u = dom U
4 3 fveq2d u = U fBas dom u = fBas dom U
5 raleq u = U v u a f a × a v v U a f a × a v
6 4 5 rabeqbidv u = U f fBas dom u | v u a f a × a v = f fBas dom U | v U a f a × a v
7 df-cfilu CauFilU = u ran UnifOn f fBas dom u | v u a f a × a v
8 fvex fBas dom U V
9 8 rabex f fBas dom U | v U a f a × a v V
10 6 7 9 fvmpt U ran UnifOn CauFilU U = f fBas dom U | v U a f a × a v
11 1 10 syl U UnifOn X CauFilU U = f fBas dom U | v U a f a × a v
12 11 eleq2d U UnifOn X F CauFilU U F f fBas dom U | v U a f a × a v
13 rexeq f = F a f a × a v a F a × a v
14 13 ralbidv f = F v U a f a × a v v U a F a × a v
15 14 elrab F f fBas dom U | v U a f a × a v F fBas dom U v U a F a × a v
16 12 15 bitrdi U UnifOn X F CauFilU U F fBas dom U v U a F a × a v
17 ustbas2 U UnifOn X X = dom U
18 17 fveq2d U UnifOn X fBas X = fBas dom U
19 18 eleq2d U UnifOn X F fBas X F fBas dom U
20 19 anbi1d U UnifOn X F fBas X v U a F a × a v F fBas dom U v U a F a × a v
21 16 20 bitr4d U UnifOn X F CauFilU U F fBas X v U a F a × a v