Step |
Hyp |
Ref |
Expression |
1 |
|
iscgra.p |
|
2 |
|
iscgra.i |
|
3 |
|
iscgra.k |
|
4 |
|
iscgra.g |
|
5 |
|
iscgra.a |
|
6 |
|
iscgra.b |
|
7 |
|
iscgra.c |
|
8 |
|
iscgra.d |
|
9 |
|
iscgra.e |
|
10 |
|
iscgra.f |
|
11 |
|
iscgra1.m |
|
12 |
|
iscgra1.1 |
|
13 |
|
iscgra1.2 |
|
14 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|
15 |
9
|
ad3antrrr |
|
16 |
6
|
ad3antrrr |
|
17 |
5
|
ad3antrrr |
|
18 |
4
|
ad3antrrr |
|
19 |
8
|
ad3antrrr |
|
20 |
|
simpllr |
|
21 |
|
simpr2 |
|
22 |
1 2 3 20 19 15 18 21
|
hlne2 |
|
23 |
12
|
ad3antrrr |
|
24 |
23
|
necomd |
|
25 |
1 2 3 19 15 15 18 22
|
hlid |
|
26 |
|
eqid |
|
27 |
7
|
ad3antrrr |
|
28 |
|
simplr |
|
29 |
|
simpr1 |
|
30 |
1 11 2 26 18 17 16 27 20 15 28 29
|
cgr3simp1 |
|
31 |
30
|
eqcomd |
|
32 |
1 11 2 18 20 15 17 16 31
|
tgcgrcomlr |
|
33 |
13
|
ad3antrrr |
|
34 |
33
|
eqcomd |
|
35 |
1 11 2 18 19 15 17 16 34
|
tgcgrcomlr |
|
36 |
1 2 3 15 16 17 18 19 11 22 24 20 19 21 25 32 35
|
hlcgreulem |
|
37 |
|
simpr3 |
|
38 |
36 29 37
|
jca32 |
|
39 |
|
simprrl |
|
40 |
|
simprl |
|
41 |
8
|
ad3antrrr |
|
42 |
9
|
ad3antrrr |
|
43 |
4
|
ad3antrrr |
|
44 |
1 11 2 4 5 6 8 9 13 12
|
tgcgrneq |
|
45 |
44
|
ad3antrrr |
|
46 |
1 2 3 41 41 42 43 45
|
hlid |
|
47 |
40 46
|
eqbrtrd |
|
48 |
|
simprrr |
|
49 |
39 47 48
|
3jca |
|
50 |
38 49
|
impbida |
|
51 |
50
|
rexbidva |
|
52 |
|
r19.42v |
|
53 |
51 52
|
bitrdi |
|
54 |
53
|
rexbidva |
|
55 |
|
id |
|
56 |
|
eqidd |
|
57 |
|
eqidd |
|
58 |
55 56 57
|
s3eqd |
|
59 |
58
|
breq2d |
|
60 |
59
|
anbi1d |
|
61 |
60
|
rexbidv |
|
62 |
61
|
ceqsrexv |
|
63 |
8 62
|
syl |
|
64 |
14 54 63
|
3bitrd |
|