Step |
Hyp |
Ref |
Expression |
1 |
|
iscgrg.p |
|
2 |
|
iscgrg.m |
|
3 |
|
iscgrg.e |
|
4 |
|
elex |
|
5 |
|
fveq2 |
|
6 |
5 1
|
eqtr4di |
|
7 |
6
|
oveq1d |
|
8 |
7
|
eleq2d |
|
9 |
7
|
eleq2d |
|
10 |
8 9
|
anbi12d |
|
11 |
|
fveq2 |
|
12 |
11 2
|
eqtr4di |
|
13 |
12
|
oveqd |
|
14 |
12
|
oveqd |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
2ralbidv |
|
17 |
16
|
anbi2d |
|
18 |
10 17
|
anbi12d |
|
19 |
18
|
opabbidv |
|
20 |
|
df-cgrg |
|
21 |
|
df-xp |
|
22 |
|
ovex |
|
23 |
22 22
|
xpex |
|
24 |
21 23
|
eqeltrri |
|
25 |
|
simpl |
|
26 |
25
|
ssopab2i |
|
27 |
24 26
|
ssexi |
|
28 |
19 20 27
|
fvmpt |
|
29 |
4 28
|
syl |
|
30 |
3 29
|
syl5eq |
|
31 |
30
|
breqd |
|
32 |
|
dmeq |
|
33 |
32
|
eqeq1d |
|
34 |
32
|
adantr |
|
35 |
|
simpll |
|
36 |
35
|
fveq1d |
|
37 |
35
|
fveq1d |
|
38 |
36 37
|
oveq12d |
|
39 |
38
|
eqeq1d |
|
40 |
34 39
|
raleqbidva |
|
41 |
32 40
|
raleqbidva |
|
42 |
33 41
|
anbi12d |
|
43 |
|
dmeq |
|
44 |
43
|
eqeq2d |
|
45 |
|
fveq1 |
|
46 |
|
fveq1 |
|
47 |
45 46
|
oveq12d |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
2ralbidv |
|
50 |
44 49
|
anbi12d |
|
51 |
42 50
|
sylan9bb |
|
52 |
|
eqid |
|
53 |
51 52
|
brab2a |
|
54 |
31 53
|
bitrdi |
|