Metamath Proof Explorer


Theorem iscgrg

Description: The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses iscgrg.p P = Base G
iscgrg.m - ˙ = dist G
iscgrg.e ˙ = 𝒢 G
Assertion iscgrg G V A ˙ B A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j

Proof

Step Hyp Ref Expression
1 iscgrg.p P = Base G
2 iscgrg.m - ˙ = dist G
3 iscgrg.e ˙ = 𝒢 G
4 elex G V G V
5 fveq2 g = G Base g = Base G
6 5 1 eqtr4di g = G Base g = P
7 6 oveq1d g = G Base g 𝑝𝑚 = P 𝑝𝑚
8 7 eleq2d g = G a Base g 𝑝𝑚 a P 𝑝𝑚
9 7 eleq2d g = G b Base g 𝑝𝑚 b P 𝑝𝑚
10 8 9 anbi12d g = G a Base g 𝑝𝑚 b Base g 𝑝𝑚 a P 𝑝𝑚 b P 𝑝𝑚
11 fveq2 g = G dist g = dist G
12 11 2 eqtr4di g = G dist g = - ˙
13 12 oveqd g = G a i dist g a j = a i - ˙ a j
14 12 oveqd g = G b i dist g b j = b i - ˙ b j
15 13 14 eqeq12d g = G a i dist g a j = b i dist g b j a i - ˙ a j = b i - ˙ b j
16 15 2ralbidv g = G i dom a j dom a a i dist g a j = b i dist g b j i dom a j dom a a i - ˙ a j = b i - ˙ b j
17 16 anbi2d g = G dom a = dom b i dom a j dom a a i dist g a j = b i dist g b j dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
18 10 17 anbi12d g = G a Base g 𝑝𝑚 b Base g 𝑝𝑚 dom a = dom b i dom a j dom a a i dist g a j = b i dist g b j a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
19 18 opabbidv g = G a b | a Base g 𝑝𝑚 b Base g 𝑝𝑚 dom a = dom b i dom a j dom a a i dist g a j = b i dist g b j = a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
20 df-cgrg 𝒢 = g V a b | a Base g 𝑝𝑚 b Base g 𝑝𝑚 dom a = dom b i dom a j dom a a i dist g a j = b i dist g b j
21 df-xp P 𝑝𝑚 × P 𝑝𝑚 = a b | a P 𝑝𝑚 b P 𝑝𝑚
22 ovex P 𝑝𝑚 V
23 22 22 xpex P 𝑝𝑚 × P 𝑝𝑚 V
24 21 23 eqeltrri a b | a P 𝑝𝑚 b P 𝑝𝑚 V
25 simpl a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j a P 𝑝𝑚 b P 𝑝𝑚
26 25 ssopab2i a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j a b | a P 𝑝𝑚 b P 𝑝𝑚
27 24 26 ssexi a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j V
28 19 20 27 fvmpt G V 𝒢 G = a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
29 4 28 syl G V 𝒢 G = a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
30 3 29 syl5eq G V ˙ = a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
31 30 breqd G V A ˙ B A a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j B
32 dmeq a = A dom a = dom A
33 32 eqeq1d a = A dom a = dom b dom A = dom b
34 32 adantr a = A i dom a dom a = dom A
35 simpll a = A i dom a j dom a a = A
36 35 fveq1d a = A i dom a j dom a a i = A i
37 35 fveq1d a = A i dom a j dom a a j = A j
38 36 37 oveq12d a = A i dom a j dom a a i - ˙ a j = A i - ˙ A j
39 38 eqeq1d a = A i dom a j dom a a i - ˙ a j = b i - ˙ b j A i - ˙ A j = b i - ˙ b j
40 34 39 raleqbidva a = A i dom a j dom a a i - ˙ a j = b i - ˙ b j j dom A A i - ˙ A j = b i - ˙ b j
41 32 40 raleqbidva a = A i dom a j dom a a i - ˙ a j = b i - ˙ b j i dom A j dom A A i - ˙ A j = b i - ˙ b j
42 33 41 anbi12d a = A dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j dom A = dom b i dom A j dom A A i - ˙ A j = b i - ˙ b j
43 dmeq b = B dom b = dom B
44 43 eqeq2d b = B dom A = dom b dom A = dom B
45 fveq1 b = B b i = B i
46 fveq1 b = B b j = B j
47 45 46 oveq12d b = B b i - ˙ b j = B i - ˙ B j
48 47 eqeq2d b = B A i - ˙ A j = b i - ˙ b j A i - ˙ A j = B i - ˙ B j
49 48 2ralbidv b = B i dom A j dom A A i - ˙ A j = b i - ˙ b j i dom A j dom A A i - ˙ A j = B i - ˙ B j
50 44 49 anbi12d b = B dom A = dom b i dom A j dom A A i - ˙ A j = b i - ˙ b j dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
51 42 50 sylan9bb a = A b = B dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
52 eqid a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j = a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j
53 51 52 brab2a A a b | a P 𝑝𝑚 b P 𝑝𝑚 dom a = dom b i dom a j dom a a i - ˙ a j = b i - ˙ b j B A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
54 31 53 bitrdi G V A ˙ B A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j