Metamath Proof Explorer


Theorem iscgrgd

Description: The property for two sequences A and B of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses iscgrg.p P = Base G
iscgrg.m - ˙ = dist G
iscgrg.e ˙ = 𝒢 G
iscgrgd.g φ G V
iscgrgd.d φ D
iscgrgd.a φ A : D P
iscgrgd.b φ B : D P
Assertion iscgrgd φ A ˙ B i dom A j dom A A i - ˙ A j = B i - ˙ B j

Proof

Step Hyp Ref Expression
1 iscgrg.p P = Base G
2 iscgrg.m - ˙ = dist G
3 iscgrg.e ˙ = 𝒢 G
4 iscgrgd.g φ G V
5 iscgrgd.d φ D
6 iscgrgd.a φ A : D P
7 iscgrgd.b φ B : D P
8 1 fvexi P V
9 reex V
10 elpm2r P V V A : D P D A P 𝑝𝑚
11 8 9 10 mpanl12 A : D P D A P 𝑝𝑚
12 6 5 11 syl2anc φ A P 𝑝𝑚
13 elpm2r P V V B : D P D B P 𝑝𝑚
14 8 9 13 mpanl12 B : D P D B P 𝑝𝑚
15 7 5 14 syl2anc φ B P 𝑝𝑚
16 12 15 jca φ A P 𝑝𝑚 B P 𝑝𝑚
17 16 biantrurd φ dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
18 6 fdmd φ dom A = D
19 7 fdmd φ dom B = D
20 18 19 eqtr4d φ dom A = dom B
21 20 biantrurd φ i dom A j dom A A i - ˙ A j = B i - ˙ B j dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
22 1 2 3 iscgrg G V A ˙ B A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
23 4 22 syl φ A ˙ B A P 𝑝𝑚 B P 𝑝𝑚 dom A = dom B i dom A j dom A A i - ˙ A j = B i - ˙ B j
24 17 21 23 3bitr4rd φ A ˙ B i dom A j dom A A i - ˙ A j = B i - ˙ B j