Step |
Hyp |
Ref |
Expression |
1 |
|
isclatd.b |
|
2 |
|
isclatd.u |
|
3 |
|
isclatd.g |
|
4 |
|
isclatd.k |
|
5 |
|
isclatd.1 |
|
6 |
|
isclatd.2 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
biid |
|
11 |
7 8 9 10 4
|
lubdm |
|
12 |
|
ssrab2 |
|
13 |
11 12
|
eqsstrdi |
|
14 |
|
elpwi |
|
15 |
14 5
|
sylan2 |
|
16 |
15
|
ralrimiva |
|
17 |
|
dfss3 |
|
18 |
16 17
|
sylibr |
|
19 |
1
|
pweqd |
|
20 |
2
|
dmeqd |
|
21 |
18 19 20
|
3sstr3d |
|
22 |
13 21
|
eqssd |
|
23 |
|
eqid |
|
24 |
|
biid |
|
25 |
7 8 23 24 4
|
glbdm |
|
26 |
|
ssrab2 |
|
27 |
25 26
|
eqsstrdi |
|
28 |
14 6
|
sylan2 |
|
29 |
28
|
ralrimiva |
|
30 |
|
dfss3 |
|
31 |
29 30
|
sylibr |
|
32 |
3
|
dmeqd |
|
33 |
31 19 32
|
3sstr3d |
|
34 |
27 33
|
eqssd |
|
35 |
7 9 23
|
isclat |
|
36 |
35
|
biimpri |
|
37 |
4 22 34 36
|
syl12anc |
|