Database
BASIC TOPOLOGY
Topology
Closure and interior
iscld4
Next ⟩
isopn3
Metamath Proof Explorer
Ascii
Unicode
Theorem
iscld4
Description:
A subset is closed iff it contains its own closure.
(Contributed by
NM
, 31-Jan-2008)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
iscld4
⊢
J
∈
Top
∧
S
⊆
X
→
S
∈
Clsd
⁡
J
↔
cls
⁡
J
⁡
S
⊆
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
1
iscld3
⊢
J
∈
Top
∧
S
⊆
X
→
S
∈
Clsd
⁡
J
↔
cls
⁡
J
⁡
S
=
S
3
eqss
⊢
cls
⁡
J
⁡
S
=
S
↔
cls
⁡
J
⁡
S
⊆
S
∧
S
⊆
cls
⁡
J
⁡
S
4
1
sscls
⊢
J
∈
Top
∧
S
⊆
X
→
S
⊆
cls
⁡
J
⁡
S
5
4
biantrud
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
⊆
S
↔
cls
⁡
J
⁡
S
⊆
S
∧
S
⊆
cls
⁡
J
⁡
S
6
3
5
bitr4id
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
=
S
↔
cls
⁡
J
⁡
S
⊆
S
7
2
6
bitrd
⊢
J
∈
Top
∧
S
⊆
X
→
S
∈
Clsd
⁡
J
↔
cls
⁡
J
⁡
S
⊆
S