Step |
Hyp |
Ref |
Expression |
1 |
|
fncld |
|
2 |
|
fnfun |
|
3 |
1 2
|
ax-mp |
|
4 |
|
fvelima |
|
5 |
3 4
|
mpan |
|
6 |
|
cldmreon |
|
7 |
|
topontop |
|
8 |
|
0cld |
|
9 |
7 8
|
syl |
|
10 |
|
uncld |
|
11 |
10
|
adantl |
|
12 |
11
|
ralrimivva |
|
13 |
6 9 12
|
3jca |
|
14 |
|
eleq1 |
|
15 |
|
eleq2 |
|
16 |
|
eleq2 |
|
17 |
16
|
raleqbi1dv |
|
18 |
17
|
raleqbi1dv |
|
19 |
14 15 18
|
3anbi123d |
|
20 |
13 19
|
syl5ibcom |
|
21 |
20
|
rexlimiv |
|
22 |
5 21
|
syl |
|
23 |
|
simp1 |
|
24 |
|
simp2 |
|
25 |
|
uneq1 |
|
26 |
25
|
eleq1d |
|
27 |
|
uneq2 |
|
28 |
27
|
eleq1d |
|
29 |
26 28
|
rspc2v |
|
30 |
29
|
com12 |
|
31 |
30
|
3ad2ant3 |
|
32 |
31
|
3impib |
|
33 |
|
eqid |
|
34 |
23 24 32 33
|
mretopd |
|
35 |
34
|
simprd |
|
36 |
34
|
simpld |
|
37 |
7
|
ssriv |
|
38 |
1
|
fndmi |
|
39 |
37 38
|
sseqtrri |
|
40 |
|
funfvima2 |
|
41 |
3 39 40
|
mp2an |
|
42 |
36 41
|
syl |
|
43 |
35 42
|
eqeltrd |
|
44 |
22 43
|
impbii |
|