Metamath Proof Explorer


Theorem isclm

Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f F = Scalar W
isclm.k K = Base F
Assertion isclm W CMod W LMod F = fld 𝑠 K K SubRing fld

Proof

Step Hyp Ref Expression
1 isclm.f F = Scalar W
2 isclm.k K = Base F
3 fvexd w = W Scalar w V
4 fvexd w = W f = Scalar w Base f V
5 id f = Scalar w f = Scalar w
6 fveq2 w = W Scalar w = Scalar W
7 6 1 eqtr4di w = W Scalar w = F
8 5 7 sylan9eqr w = W f = Scalar w f = F
9 8 adantr w = W f = Scalar w k = Base f f = F
10 id k = Base f k = Base f
11 8 fveq2d w = W f = Scalar w Base f = Base F
12 11 2 eqtr4di w = W f = Scalar w Base f = K
13 10 12 sylan9eqr w = W f = Scalar w k = Base f k = K
14 13 oveq2d w = W f = Scalar w k = Base f fld 𝑠 k = fld 𝑠 K
15 9 14 eqeq12d w = W f = Scalar w k = Base f f = fld 𝑠 k F = fld 𝑠 K
16 13 eleq1d w = W f = Scalar w k = Base f k SubRing fld K SubRing fld
17 15 16 anbi12d w = W f = Scalar w k = Base f f = fld 𝑠 k k SubRing fld F = fld 𝑠 K K SubRing fld
18 4 17 sbcied w = W f = Scalar w [˙Base f / k]˙ f = fld 𝑠 k k SubRing fld F = fld 𝑠 K K SubRing fld
19 3 18 sbcied w = W [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k SubRing fld F = fld 𝑠 K K SubRing fld
20 df-clm CMod = w LMod | [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k SubRing fld
21 19 20 elrab2 W CMod W LMod F = fld 𝑠 K K SubRing fld
22 3anass W LMod F = fld 𝑠 K K SubRing fld W LMod F = fld 𝑠 K K SubRing fld
23 21 22 bitr4i W CMod W LMod F = fld 𝑠 K K SubRing fld