Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
isclmi
Next ⟩
clmzss
Metamath Proof Explorer
Ascii
Unicode
Theorem
isclmi
Description:
Reverse direction of
isclm
.
(Contributed by
Mario Carneiro
, 30-Oct-2015)
Ref
Expression
Hypothesis
clm0.f
⊢
F
=
Scalar
⁡
W
Assertion
isclmi
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
W
∈
CMod
Proof
Step
Hyp
Ref
Expression
1
clm0.f
⊢
F
=
Scalar
⁡
W
2
simp1
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
W
∈
LMod
3
simp2
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
F
=
ℂ
fld
↾
𝑠
K
4
eqid
⊢
ℂ
fld
↾
𝑠
K
=
ℂ
fld
↾
𝑠
K
5
4
subrgbas
⊢
K
∈
SubRing
⁡
ℂ
fld
→
K
=
Base
ℂ
fld
↾
𝑠
K
6
5
3ad2ant3
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
K
=
Base
ℂ
fld
↾
𝑠
K
7
3
fveq2d
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
Base
F
=
Base
ℂ
fld
↾
𝑠
K
8
6
7
eqtr4d
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
K
=
Base
F
9
8
oveq2d
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
ℂ
fld
↾
𝑠
K
=
ℂ
fld
↾
𝑠
Base
F
10
3
9
eqtrd
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
F
=
ℂ
fld
↾
𝑠
Base
F
11
simp3
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
K
∈
SubRing
⁡
ℂ
fld
12
8
11
eqeltrrd
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
Base
F
∈
SubRing
⁡
ℂ
fld
13
eqid
⊢
Base
F
=
Base
F
14
1
13
isclm
⊢
W
∈
CMod
↔
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
ℂ
fld
15
2
10
12
14
syl3anbrc
⊢
W
∈
LMod
∧
F
=
ℂ
fld
↾
𝑠
K
∧
K
∈
SubRing
⁡
ℂ
fld
→
W
∈
CMod