Metamath Proof Explorer


Theorem isclwwlk

Description: Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypotheses clwwlk.v V = Vtx G
clwwlk.e E = Edg G
Assertion isclwwlk W ClWWalks G W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E

Proof

Step Hyp Ref Expression
1 clwwlk.v V = Vtx G
2 clwwlk.e E = Edg G
3 neeq1 w = W w W
4 fveq2 w = W w = W
5 4 oveq1d w = W w 1 = W 1
6 5 oveq2d w = W 0 ..^ w 1 = 0 ..^ W 1
7 fveq1 w = W w i = W i
8 fveq1 w = W w i + 1 = W i + 1
9 7 8 preq12d w = W w i w i + 1 = W i W i + 1
10 9 eleq1d w = W w i w i + 1 E W i W i + 1 E
11 6 10 raleqbidv w = W i 0 ..^ w 1 w i w i + 1 E i 0 ..^ W 1 W i W i + 1 E
12 fveq2 w = W lastS w = lastS W
13 fveq1 w = W w 0 = W 0
14 12 13 preq12d w = W lastS w w 0 = lastS W W 0
15 14 eleq1d w = W lastS w w 0 E lastS W W 0 E
16 3 11 15 3anbi123d w = W w i 0 ..^ w 1 w i w i + 1 E lastS w w 0 E W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
17 16 elrab W w Word V | w i 0 ..^ w 1 w i w i + 1 E lastS w w 0 E W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
18 1 2 clwwlk ClWWalks G = w Word V | w i 0 ..^ w 1 w i w i + 1 E lastS w w 0 E
19 18 eleq2i W ClWWalks G W w Word V | w i 0 ..^ w 1 w i w i + 1 E lastS w w 0 E
20 3anass W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
21 anass W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
22 3anass W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
23 22 bicomi W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
24 23 anbi2i W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
25 20 21 24 3bitri W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
26 17 19 25 3bitr4i W ClWWalks G W Word V W i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E