Metamath Proof Explorer


Theorem isclwwlkn

Description: A word over the set of vertices representing a closed walk of a fixed length. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion isclwwlkn W N ClWWalksN G W ClWWalks G W = N

Proof

Step Hyp Ref Expression
1 fveqeq2 w = W w = N W = N
2 clwwlkn N ClWWalksN G = w ClWWalks G | w = N
3 1 2 elrab2 W N ClWWalksN G W ClWWalks G W = N