Metamath Proof Explorer


Theorem isclwwlknon

Description: A word over the set of vertices representing a closed walk on vertex X of length N in a graph G . (Contributed by AV, 25-Feb-2022) (Revised by AV, 24-Mar-2022)

Ref Expression
Assertion isclwwlknon W X ClWWalksNOn G N W N ClWWalksN G W 0 = X

Proof

Step Hyp Ref Expression
1 fveq1 w = W w 0 = W 0
2 1 eqeq1d w = W w 0 = X W 0 = X
3 clwwlknon X ClWWalksNOn G N = w N ClWWalksN G | w 0 = X
4 2 3 elrab2 W X ClWWalksNOn G N W N ClWWalksN G W 0 = X