Metamath Proof Explorer


Theorem iscmet2

Description: A metric D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of Kreyszig p. 28. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis iscmet2.1 J = MetOpen D
Assertion iscmet2 D CMet X D Met X Cau D dom t J

Proof

Step Hyp Ref Expression
1 iscmet2.1 J = MetOpen D
2 cmetmet D CMet X D Met X
3 1 cmetcau D CMet X f Cau D f dom t J
4 3 ex D CMet X f Cau D f dom t J
5 4 ssrdv D CMet X Cau D dom t J
6 2 5 jca D CMet X D Met X Cau D dom t J
7 ssel2 Cau D dom t J f Cau D f dom t J
8 7 a1d Cau D dom t J f Cau D f : X f dom t J
9 8 ralrimiva Cau D dom t J f Cau D f : X f dom t J
10 9 adantl D Met X Cau D dom t J f Cau D f : X f dom t J
11 nnuz = 1
12 1zzd D Met X Cau D dom t J 1
13 simpl D Met X Cau D dom t J D Met X
14 11 1 12 13 iscmet3 D Met X Cau D dom t J D CMet X f Cau D f : X f dom t J
15 10 14 mpbird D Met X Cau D dom t J D CMet X
16 6 15 impbii D CMet X D Met X Cau D dom t J