Metamath Proof Explorer


Theorem iscmet3

Description: The property " D is a complete metric" expressed in terms of functions on NN (or any other upper integer set). Thus, we only have to look at functions on NN , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 5-May-2014)

Ref Expression
Hypotheses iscmet3.1 Z = M
iscmet3.2 J = MetOpen D
iscmet3.3 φ M
iscmet3.4 φ D Met X
Assertion iscmet3 φ D CMet X f Cau D f : Z X f dom t J

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z = M
2 iscmet3.2 J = MetOpen D
3 iscmet3.3 φ M
4 iscmet3.4 φ D Met X
5 2 cmetcau D CMet X f Cau D f dom t J
6 5 a1d D CMet X f Cau D f : Z X f dom t J
7 6 ralrimiva D CMet X f Cau D f : Z X f dom t J
8 4 adantr φ f Cau D f : Z X f dom t J D Met X
9 simpr φ f Cau D f : Z X f dom t J g CauFil D g CauFil D
10 1rp 1 +
11 rphalfcl 1 + 1 2 +
12 10 11 ax-mp 1 2 +
13 rpexpcl 1 2 + k 1 2 k +
14 12 13 mpan k 1 2 k +
15 cfili g CauFil D 1 2 k + t g u t v t u D v < 1 2 k
16 9 14 15 syl2an φ f Cau D f : Z X f dom t J g CauFil D k t g u t v t u D v < 1 2 k
17 16 ralrimiva φ f Cau D f : Z X f dom t J g CauFil D k t g u t v t u D v < 1 2 k
18 vex g V
19 znnen
20 nnenom ω
21 19 20 entri ω
22 raleq t = s k v t u D v < 1 2 k v s k u D v < 1 2 k
23 22 raleqbi1dv t = s k u t v t u D v < 1 2 k u s k v s k u D v < 1 2 k
24 18 21 23 axcc4 k t g u t v t u D v < 1 2 k s s : g k u s k v s k u D v < 1 2 k
25 17 24 syl φ f Cau D f : Z X f dom t J g CauFil D s s : g k u s k v s k u D v < 1 2 k
26 3 ad2antrr φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k M
27 1 uzenom M Z ω
28 endom Z ω Z ω
29 26 27 28 3syl φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k Z ω
30 dfin5 I X n = M k s n = x I X | x n = M k s n
31 fzn0 M k k M
32 31 biimpri k M M k
33 32 1 eleq2s k Z M k
34 metxmet D Met X D ∞Met X
35 4 34 syl φ D ∞Met X
36 35 adantr φ f Cau D f : Z X f dom t J D ∞Met X
37 simpl g CauFil D s : g g CauFil D
38 cfilfil D ∞Met X g CauFil D g Fil X
39 36 37 38 syl2an φ f Cau D f : Z X f dom t J g CauFil D s : g g Fil X
40 simprr φ f Cau D f : Z X f dom t J g CauFil D s : g s : g
41 elfzelz n M k n
42 ffvelrn s : g n s n g
43 40 41 42 syl2an φ f Cau D f : Z X f dom t J g CauFil D s : g n M k s n g
44 filelss g Fil X s n g s n X
45 39 43 44 syl2an2r φ f Cau D f : Z X f dom t J g CauFil D s : g n M k s n X
46 45 ralrimiva φ f Cau D f : Z X f dom t J g CauFil D s : g n M k s n X
47 r19.2z M k n M k s n X n M k s n X
48 33 46 47 syl2anr φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n M k s n X
49 iinss n M k s n X n = M k s n X
50 48 49 syl φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n = M k s n X
51 8 ad2antrr φ f Cau D f : Z X f dom t J g CauFil D s : g k Z D Met X
52 elfvdm D Met X X dom Met
53 fvi X dom Met I X = X
54 51 52 53 3syl φ f Cau D f : Z X f dom t J g CauFil D s : g k Z I X = X
55 50 54 sseqtrrd φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n = M k s n I X
56 sseqin2 n = M k s n I X I X n = M k s n = n = M k s n
57 55 56 sylib φ f Cau D f : Z X f dom t J g CauFil D s : g k Z I X n = M k s n = n = M k s n
58 30 57 eqtr3id φ f Cau D f : Z X f dom t J g CauFil D s : g k Z x I X | x n = M k s n = n = M k s n
59 39 adantr φ f Cau D f : Z X f dom t J g CauFil D s : g k Z g Fil X
60 43 ralrimiva φ f Cau D f : Z X f dom t J g CauFil D s : g n M k s n g
61 60 adantr φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n M k s n g
62 33 adantl φ f Cau D f : Z X f dom t J g CauFil D s : g k Z M k
63 fzfid φ f Cau D f : Z X f dom t J g CauFil D s : g k Z M k Fin
64 iinfi g Fil X n M k s n g M k M k Fin n = M k s n fi g
65 59 61 62 63 64 syl13anc φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n = M k s n fi g
66 filfi g Fil X fi g = g
67 59 66 syl φ f Cau D f : Z X f dom t J g CauFil D s : g k Z fi g = g
68 65 67 eleqtrd φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n = M k s n g
69 fileln0 g Fil X n = M k s n g n = M k s n
70 39 68 69 syl2an2r φ f Cau D f : Z X f dom t J g CauFil D s : g k Z n = M k s n
71 58 70 eqnetrd φ f Cau D f : Z X f dom t J g CauFil D s : g k Z x I X | x n = M k s n
72 rabn0 x I X | x n = M k s n x I X x n = M k s n
73 71 72 sylib φ f Cau D f : Z X f dom t J g CauFil D s : g k Z x I X x n = M k s n
74 73 ralrimiva φ f Cau D f : Z X f dom t J g CauFil D s : g k Z x I X x n = M k s n
75 74 adantrrr φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k k Z x I X x n = M k s n
76 fvex I X V
77 eleq1 x = f k x n = M k s n f k n = M k s n
78 fvex f k V
79 eliin f k V f k n = M k s n n M k f k s n
80 78 79 ax-mp f k n = M k s n n M k f k s n
81 77 80 bitrdi x = f k x n = M k s n n M k f k s n
82 76 81 axcc4dom Z ω k Z x I X x n = M k s n f f : Z I X k Z n M k f k s n
83 29 75 82 syl2anc φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k f f : Z I X k Z n M k f k s n
84 df-ral f Cau D f : Z X f dom t J f f Cau D f : Z X f dom t J
85 19.29 f f Cau D f : Z X f dom t J f f : Z I X k Z n M k f k s n f f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n
86 84 85 sylanb f Cau D f : Z X f dom t J f f : Z I X k Z n M k f k s n f f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n
87 3 ad2antrr φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n M
88 4 ad2antrr φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n D Met X
89 simprrl φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f : Z I X
90 feq3 I X = X f : Z I X f : Z X
91 88 52 53 90 4syl φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f : Z I X f : Z X
92 89 91 mpbid φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f : Z X
93 simplrr φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n s : g k u s k v s k u D v < 1 2 k
94 93 simprd φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n k u s k v s k u D v < 1 2 k
95 fveq2 k = i s k = s i
96 oveq2 k = i 1 2 k = 1 2 i
97 96 breq2d k = i u D v < 1 2 k u D v < 1 2 i
98 95 97 raleqbidv k = i v s k u D v < 1 2 k v s i u D v < 1 2 i
99 95 98 raleqbidv k = i u s k v s k u D v < 1 2 k u s i v s i u D v < 1 2 i
100 99 cbvralvw k u s k v s k u D v < 1 2 k i u s i v s i u D v < 1 2 i
101 94 100 sylib φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n i u s i v s i u D v < 1 2 i
102 simprrr φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n k Z n M k f k s n
103 fveq2 n = j s n = s j
104 103 eleq2d n = j f k s n f k s j
105 104 cbvralvw n M k f k s n j M k f k s j
106 oveq2 k = i M k = M i
107 fveq2 k = i f k = f i
108 107 eleq1d k = i f k s j f i s j
109 106 108 raleqbidv k = i j M k f k s j j M i f i s j
110 105 109 syl5bb k = i n M k f k s n j M i f i s j
111 110 cbvralvw k Z n M k f k s n i Z j M i f i s j
112 102 111 sylib φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n i Z j M i f i s j
113 88 34 syl φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n D ∞Met X
114 simplrl φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n g CauFil D
115 113 114 38 syl2anc φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n g Fil X
116 93 simpld φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n s : g
117 1 2 87 88 92 101 112 iscmet3lem1 φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f Cau D
118 simprl φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f Cau D f : Z X f dom t J
119 117 92 118 mp2d φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n f dom t J
120 1 2 87 88 92 101 112 115 116 119 iscmet3lem2 φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n J fLim g
121 120 ex φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n J fLim g
122 121 exlimdv φ g CauFil D s : g k u s k v s k u D v < 1 2 k f f Cau D f : Z X f dom t J f : Z I X k Z n M k f k s n J fLim g
123 86 122 syl5 φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f f : Z I X k Z n M k f k s n J fLim g
124 123 expdimp φ g CauFil D s : g k u s k v s k u D v < 1 2 k f Cau D f : Z X f dom t J f f : Z I X k Z n M k f k s n J fLim g
125 124 an32s φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k f f : Z I X k Z n M k f k s n J fLim g
126 83 125 mpd φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k J fLim g
127 126 expr φ f Cau D f : Z X f dom t J g CauFil D s : g k u s k v s k u D v < 1 2 k J fLim g
128 127 exlimdv φ f Cau D f : Z X f dom t J g CauFil D s s : g k u s k v s k u D v < 1 2 k J fLim g
129 25 128 mpd φ f Cau D f : Z X f dom t J g CauFil D J fLim g
130 129 ralrimiva φ f Cau D f : Z X f dom t J g CauFil D J fLim g
131 2 iscmet D CMet X D Met X g CauFil D J fLim g
132 8 130 131 sylanbrc φ f Cau D f : Z X f dom t J D CMet X
133 132 ex φ f Cau D f : Z X f dom t J D CMet X
134 7 133 impbid2 φ D CMet X f Cau D f : Z X f dom t J