Metamath Proof Explorer


Theorem iscmet3i

Description: Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007) (Revised by Mario Carneiro, 5-May-2014)

Ref Expression
Hypotheses iscmet3i.2 J = MetOpen D
iscmet3i.3 D Met X
iscmet3i.4 f Cau D f : X f dom t J
Assertion iscmet3i D CMet X

Proof

Step Hyp Ref Expression
1 iscmet3i.2 J = MetOpen D
2 iscmet3i.3 D Met X
3 iscmet3i.4 f Cau D f : X f dom t J
4 nnuz = 1
5 1zzd 1
6 2 a1i D Met X
7 4 1 5 6 iscmet3 D CMet X f Cau D f : X f dom t J
8 7 mptru D CMet X f Cau D f : X f dom t J
9 3 ex f Cau D f : X f dom t J
10 8 9 mprgbir D CMet X