Metamath Proof Explorer


Theorem iscmet3lem1

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscmet3.1 Z = M
iscmet3.2 J = MetOpen D
iscmet3.3 φ M
iscmet3.4 φ D Met X
iscmet3.6 φ F : Z X
iscmet3.9 φ k u S k v S k u D v < 1 2 k
iscmet3.10 φ k Z n M k F k S n
Assertion iscmet3lem1 φ F Cau D

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z = M
2 iscmet3.2 J = MetOpen D
3 iscmet3.3 φ M
4 iscmet3.4 φ D Met X
5 iscmet3.6 φ F : Z X
6 iscmet3.9 φ k u S k v S k u D v < 1 2 k
7 iscmet3.10 φ k Z n M k F k S n
8 1 iscmet3lem3 M r + j Z k j 1 2 k < r
9 3 8 sylan φ r + j Z k j 1 2 k < r
10 1 r19.2uz j Z k j 1 2 k < r k Z 1 2 k < r
11 9 10 syl φ r + k Z 1 2 k < r
12 fveq2 n = k S n = S k
13 12 eleq2d n = k F k S n F k S k
14 7 ad2antrr φ r + k Z j k k Z n M k F k S n
15 simpl k Z j k k Z
16 15 adantl φ r + k Z j k k Z
17 rsp k Z n M k F k S n k Z n M k F k S n
18 14 16 17 sylc φ r + k Z j k n M k F k S n
19 16 1 eleqtrdi φ r + k Z j k k M
20 eluzfz2 k M k M k
21 19 20 syl φ r + k Z j k k M k
22 13 18 21 rspcdva φ r + k Z j k F k S k
23 12 eleq2d n = k F j S n F j S k
24 oveq2 k = j M k = M j
25 fveq2 k = j F k = F j
26 25 eleq1d k = j F k S n F j S n
27 24 26 raleqbidv k = j n M k F k S n n M j F j S n
28 1 uztrn2 k Z j k j Z
29 28 adantl φ r + k Z j k j Z
30 27 14 29 rspcdva φ r + k Z j k n M j F j S n
31 simprr φ r + k Z j k j k
32 elfzuzb k M j k M j k
33 19 31 32 sylanbrc φ r + k Z j k k M j
34 23 30 33 rspcdva φ r + k Z j k F j S k
35 6 ad2antrr φ r + k Z j k k u S k v S k u D v < 1 2 k
36 eluzelz k M k
37 36 1 eleq2s k Z k
38 37 ad2antrl φ r + k Z j k k
39 rsp k u S k v S k u D v < 1 2 k k u S k v S k u D v < 1 2 k
40 35 38 39 sylc φ r + k Z j k u S k v S k u D v < 1 2 k
41 oveq1 u = F k u D v = F k D v
42 41 breq1d u = F k u D v < 1 2 k F k D v < 1 2 k
43 oveq2 v = F j F k D v = F k D F j
44 43 breq1d v = F j F k D v < 1 2 k F k D F j < 1 2 k
45 42 44 rspc2va F k S k F j S k u S k v S k u D v < 1 2 k F k D F j < 1 2 k
46 22 34 40 45 syl21anc φ r + k Z j k F k D F j < 1 2 k
47 4 ad2antrr φ r + k Z j k D Met X
48 5 adantr φ r + F : Z X
49 ffvelrn F : Z X k Z F k X
50 48 15 49 syl2an φ r + k Z j k F k X
51 ffvelrn F : Z X j Z F j X
52 48 28 51 syl2an φ r + k Z j k F j X
53 metcl D Met X F k X F j X F k D F j
54 47 50 52 53 syl3anc φ r + k Z j k F k D F j
55 1rp 1 +
56 rphalfcl 1 + 1 2 +
57 55 56 ax-mp 1 2 +
58 rpexpcl 1 2 + k 1 2 k +
59 57 38 58 sylancr φ r + k Z j k 1 2 k +
60 59 rpred φ r + k Z j k 1 2 k
61 rpre r + r
62 61 ad2antlr φ r + k Z j k r
63 lttr F k D F j 1 2 k r F k D F j < 1 2 k 1 2 k < r F k D F j < r
64 54 60 62 63 syl3anc φ r + k Z j k F k D F j < 1 2 k 1 2 k < r F k D F j < r
65 46 64 mpand φ r + k Z j k 1 2 k < r F k D F j < r
66 65 anassrs φ r + k Z j k 1 2 k < r F k D F j < r
67 66 ralrimdva φ r + k Z 1 2 k < r j k F k D F j < r
68 67 reximdva φ r + k Z 1 2 k < r k Z j k F k D F j < r
69 11 68 mpd φ r + k Z j k F k D F j < r
70 69 ralrimiva φ r + k Z j k F k D F j < r
71 metxmet D Met X D ∞Met X
72 4 71 syl φ D ∞Met X
73 eqidd φ j Z F j = F j
74 eqidd φ k Z F k = F k
75 1 72 3 73 74 5 iscauf φ F Cau D r + k Z j k F k D F j < r
76 70 75 mpbird φ F Cau D