Metamath Proof Explorer


Theorem iscmet3lem3

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis iscmet3.1 Z = M
Assertion iscmet3lem3 M R + j Z k j 1 2 k < R

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z = M
2 simpl M R + M
3 simpr M R + R +
4 eluzelz k M k
5 4 1 eleq2s k Z k
6 5 adantl M R + k Z k
7 oveq2 n = k 1 2 n = 1 2 k
8 eqid n 1 2 n = n 1 2 n
9 ovex 1 2 k V
10 7 8 9 fvmpt k n 1 2 n k = 1 2 k
11 6 10 syl M R + k Z n 1 2 n k = 1 2 k
12 nn0uz 0 = 0
13 12 reseq2i n 1 2 n 0 = n 1 2 n 0
14 nn0ssz 0
15 resmpt 0 n 1 2 n 0 = n 0 1 2 n
16 14 15 ax-mp n 1 2 n 0 = n 0 1 2 n
17 13 16 eqtr3i n 1 2 n 0 = n 0 1 2 n
18 halfcn 1 2
19 18 a1i M R + 1 2
20 halfre 1 2
21 halfge0 0 1 2
22 absid 1 2 0 1 2 1 2 = 1 2
23 20 21 22 mp2an 1 2 = 1 2
24 halflt1 1 2 < 1
25 23 24 eqbrtri 1 2 < 1
26 25 a1i M R + 1 2 < 1
27 19 26 expcnv M R + n 0 1 2 n 0
28 17 27 eqbrtrid M R + n 1 2 n 0 0
29 0z 0
30 zex V
31 30 mptex n 1 2 n V
32 31 a1i M R + n 1 2 n V
33 climres 0 n 1 2 n V n 1 2 n 0 0 n 1 2 n 0
34 29 32 33 sylancr M R + n 1 2 n 0 0 n 1 2 n 0
35 28 34 mpbid M R + n 1 2 n 0
36 1 2 3 11 35 climi0 M R + j Z k j 1 2 k < R
37 1 uztrn2 j Z k j k Z
38 1rp 1 +
39 rphalfcl 1 + 1 2 +
40 38 39 ax-mp 1 2 +
41 rpexpcl 1 2 + k 1 2 k +
42 40 6 41 sylancr M R + k Z 1 2 k +
43 rpre 1 2 k + 1 2 k
44 rpge0 1 2 k + 0 1 2 k
45 43 44 absidd 1 2 k + 1 2 k = 1 2 k
46 42 45 syl M R + k Z 1 2 k = 1 2 k
47 46 breq1d M R + k Z 1 2 k < R 1 2 k < R
48 37 47 sylan2 M R + j Z k j 1 2 k < R 1 2 k < R
49 48 anassrs M R + j Z k j 1 2 k < R 1 2 k < R
50 49 ralbidva M R + j Z k j 1 2 k < R k j 1 2 k < R
51 50 rexbidva M R + j Z k j 1 2 k < R j Z k j 1 2 k < R
52 36 51 mpbid M R + j Z k j 1 2 k < R