Metamath Proof Explorer


Theorem iscn

Description: The predicate "the class F is a continuous function from topology J to topology K ". Definition of continuous function in Munkres p. 102. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion iscn JTopOnXKTopOnYFJCnKF:XYyKF-1yJ

Proof

Step Hyp Ref Expression
1 cnfval JTopOnXKTopOnYJCnK=fYX|yKf-1yJ
2 1 eleq2d JTopOnXKTopOnYFJCnKFfYX|yKf-1yJ
3 cnveq f=Ff-1=F-1
4 3 imaeq1d f=Ff-1y=F-1y
5 4 eleq1d f=Ff-1yJF-1yJ
6 5 ralbidv f=FyKf-1yJyKF-1yJ
7 6 elrab FfYX|yKf-1yJFYXyKF-1yJ
8 toponmax KTopOnYYK
9 toponmax JTopOnXXJ
10 elmapg YKXJFYXF:XY
11 8 9 10 syl2anr JTopOnXKTopOnYFYXF:XY
12 11 anbi1d JTopOnXKTopOnYFYXyKF-1yJF:XYyKF-1yJ
13 7 12 bitrid JTopOnXKTopOnYFfYX|yKf-1yJF:XYyKF-1yJ
14 2 13 bitrd JTopOnXKTopOnYFJCnKF:XYyKF-1yJ