Metamath Proof Explorer


Theorem iscn2

Description: The predicate "the class F is a continuous function from topology J to topology K ". Definition of continuous function in Munkres p. 102. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscn.1 X = J
iscn.2 Y = K
Assertion iscn2 F J Cn K J Top K Top F : X Y y K F -1 y J

Proof

Step Hyp Ref Expression
1 iscn.1 X = J
2 iscn.2 Y = K
3 df-cn Cn = j Top , k Top f k j | y k f -1 y j
4 3 elmpocl F J Cn K J Top K Top
5 1 toptopon J Top J TopOn X
6 2 toptopon K Top K TopOn Y
7 iscn J TopOn X K TopOn Y F J Cn K F : X Y y K F -1 y J
8 5 6 7 syl2anb J Top K Top F J Cn K F : X Y y K F -1 y J
9 4 8 biadanii F J Cn K J Top K Top F : X Y y K F -1 y J