Step |
Hyp |
Ref |
Expression |
1 |
|
cnf2 |
|
2 |
1
|
3expa |
|
3 |
|
cnclima |
|
4 |
3
|
ralrimiva |
|
5 |
4
|
adantl |
|
6 |
2 5
|
jca |
|
7 |
|
simprl |
|
8 |
|
toponuni |
|
9 |
8
|
ad3antrrr |
|
10 |
|
simplrl |
|
11 |
|
fimacnv |
|
12 |
11
|
eqcomd |
|
13 |
10 12
|
syl |
|
14 |
9 13
|
eqtr3d |
|
15 |
14
|
difeq1d |
|
16 |
|
ffun |
|
17 |
|
funcnvcnv |
|
18 |
|
imadif |
|
19 |
10 16 17 18
|
4syl |
|
20 |
15 19
|
eqtr4d |
|
21 |
|
imaeq2 |
|
22 |
21
|
eleq1d |
|
23 |
|
simplrr |
|
24 |
|
toponuni |
|
25 |
24
|
ad3antlr |
|
26 |
25
|
difeq1d |
|
27 |
|
topontop |
|
28 |
27
|
ad3antlr |
|
29 |
|
eqid |
|
30 |
29
|
opncld |
|
31 |
28 30
|
sylancom |
|
32 |
26 31
|
eqeltrd |
|
33 |
22 23 32
|
rspcdva |
|
34 |
20 33
|
eqeltrd |
|
35 |
|
topontop |
|
36 |
35
|
ad3antrrr |
|
37 |
|
cnvimass |
|
38 |
37 10
|
fssdm |
|
39 |
38 9
|
sseqtrd |
|
40 |
|
eqid |
|
41 |
40
|
isopn2 |
|
42 |
36 39 41
|
syl2anc |
|
43 |
34 42
|
mpbird |
|
44 |
43
|
ralrimiva |
|
45 |
|
iscn |
|
46 |
45
|
adantr |
|
47 |
7 44 46
|
mpbir2and |
|
48 |
6 47
|
impbida |
|