Description: A characterization of a continuity function using closed sets. Theorem 1(d) of BourbakiTop1 p. I.9. (Contributed by FL, 19-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscncl | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnf2 | |
|
| 2 | 1 | 3expa | |
| 3 | cnclima | |
|
| 4 | 3 | ralrimiva | |
| 5 | 4 | adantl | |
| 6 | 2 5 | jca | |
| 7 | simprl | |
|
| 8 | toponuni | |
|
| 9 | 8 | ad3antrrr | |
| 10 | simplrl | |
|
| 11 | fimacnv | |
|
| 12 | 11 | eqcomd | |
| 13 | 10 12 | syl | |
| 14 | 9 13 | eqtr3d | |
| 15 | 14 | difeq1d | |
| 16 | ffun | |
|
| 17 | funcnvcnv | |
|
| 18 | imadif | |
|
| 19 | 10 16 17 18 | 4syl | |
| 20 | 15 19 | eqtr4d | |
| 21 | imaeq2 | |
|
| 22 | 21 | eleq1d | |
| 23 | simplrr | |
|
| 24 | toponuni | |
|
| 25 | 24 | ad3antlr | |
| 26 | 25 | difeq1d | |
| 27 | topontop | |
|
| 28 | 27 | ad3antlr | |
| 29 | eqid | |
|
| 30 | 29 | opncld | |
| 31 | 28 30 | sylancom | |
| 32 | 26 31 | eqeltrd | |
| 33 | 22 23 32 | rspcdva | |
| 34 | 20 33 | eqeltrd | |
| 35 | topontop | |
|
| 36 | 35 | ad3antrrr | |
| 37 | cnvimass | |
|
| 38 | 37 10 | fssdm | |
| 39 | 38 9 | sseqtrd | |
| 40 | eqid | |
|
| 41 | 40 | isopn2 | |
| 42 | 36 39 41 | syl2anc | |
| 43 | 34 42 | mpbird | |
| 44 | 43 | ralrimiva | |
| 45 | iscn | |
|
| 46 | 45 | adantr | |
| 47 | 7 44 46 | mpbir2and | |
| 48 | 6 47 | impbida | |