| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscn.1 |
|
| 2 |
|
iscn.2 |
|
| 3 |
|
n0i |
|
| 4 |
|
df-ov |
|
| 5 |
|
ndmfv |
|
| 6 |
4 5
|
eqtrid |
|
| 7 |
6
|
fveq1d |
|
| 8 |
|
0fv |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
3 9
|
nsyl2 |
|
| 11 |
|
df-cnp |
|
| 12 |
|
ovex |
|
| 13 |
|
ssrab2 |
|
| 14 |
12 13
|
elpwi2 |
|
| 15 |
14
|
rgenw |
|
| 16 |
|
eqid |
|
| 17 |
16
|
fmpt |
|
| 18 |
15 17
|
mpbi |
|
| 19 |
|
vuniex |
|
| 20 |
12
|
pwex |
|
| 21 |
|
fex2 |
|
| 22 |
18 19 20 21
|
mp3an |
|
| 23 |
11 22
|
dmmpo |
|
| 24 |
10 23
|
eleqtrdi |
|
| 25 |
|
opelxp |
|
| 26 |
24 25
|
sylib |
|
| 27 |
26
|
simpld |
|
| 28 |
26
|
simprd |
|
| 29 |
|
elfvdm |
|
| 30 |
1
|
toptopon |
|
| 31 |
2
|
toptopon |
|
| 32 |
|
cnpfval |
|
| 33 |
30 31 32
|
syl2anb |
|
| 34 |
26 33
|
syl |
|
| 35 |
34
|
dmeqd |
|
| 36 |
|
ovex |
|
| 37 |
36
|
rabex |
|
| 38 |
37
|
rgenw |
|
| 39 |
|
dmmptg |
|
| 40 |
38 39
|
ax-mp |
|
| 41 |
35 40
|
eqtrdi |
|
| 42 |
29 41
|
eleqtrd |
|
| 43 |
27 28 42
|
3jca |
|
| 44 |
|
biid |
|
| 45 |
|
iscnp |
|
| 46 |
30 31 44 45
|
syl3anb |
|
| 47 |
43 46
|
biadanii |
|