Metamath Proof Explorer


Theorem iscnp3

Description: The predicate "the class F is a continuous function from topology J to topology K at point P ". (Contributed by NM, 15-May-2007)

Ref Expression
Assertion iscnp3 JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxxF-1y

Proof

Step Hyp Ref Expression
1 iscnp JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxFxy
2 ffun F:XYFunF
3 2 ad2antlr JTopOnXF:XYxJFunF
4 toponss JTopOnXxJxX
5 4 adantlr JTopOnXF:XYxJxX
6 fdm F:XYdomF=X
7 6 ad2antlr JTopOnXF:XYxJdomF=X
8 5 7 sseqtrrd JTopOnXF:XYxJxdomF
9 funimass3 FunFxdomFFxyxF-1y
10 3 8 9 syl2anc JTopOnXF:XYxJFxyxF-1y
11 10 anbi2d JTopOnXF:XYxJPxFxyPxxF-1y
12 11 rexbidva JTopOnXF:XYxJPxFxyxJPxxF-1y
13 12 imbi2d JTopOnXF:XYFPyxJPxFxyFPyxJPxxF-1y
14 13 ralbidv JTopOnXF:XYyKFPyxJPxFxyyKFPyxJPxxF-1y
15 14 pm5.32da JTopOnXF:XYyKFPyxJPxFxyF:XYyKFPyxJPxxF-1y
16 15 3ad2ant1 JTopOnXKTopOnYPXF:XYyKFPyxJPxFxyF:XYyKFPyxJPxxF-1y
17 1 16 bitrd JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxxF-1y