Step |
Hyp |
Ref |
Expression |
1 |
|
cnpf2 |
|
2 |
1
|
3expa |
|
3 |
2
|
3adantl3 |
|
4 |
|
simplr |
|
5 |
|
simpll2 |
|
6 |
|
topontop |
|
7 |
5 6
|
syl |
|
8 |
|
eqid |
|
9 |
8
|
neii1 |
|
10 |
7 9
|
sylancom |
|
11 |
8
|
ntropn |
|
12 |
7 10 11
|
syl2anc |
|
13 |
|
simpr |
|
14 |
3
|
adantr |
|
15 |
|
simpll3 |
|
16 |
14 15
|
ffvelrnd |
|
17 |
|
toponuni |
|
18 |
5 17
|
syl |
|
19 |
16 18
|
eleqtrd |
|
20 |
19
|
snssd |
|
21 |
8
|
neiint |
|
22 |
7 20 10 21
|
syl3anc |
|
23 |
13 22
|
mpbid |
|
24 |
|
fvex |
|
25 |
24
|
snss |
|
26 |
23 25
|
sylibr |
|
27 |
|
cnpimaex |
|
28 |
4 12 26 27
|
syl3anc |
|
29 |
|
simpl1 |
|
30 |
29
|
ad2antrr |
|
31 |
|
topontop |
|
32 |
30 31
|
syl |
|
33 |
|
simprl |
|
34 |
|
simprrl |
|
35 |
|
opnneip |
|
36 |
32 33 34 35
|
syl3anc |
|
37 |
|
simprrr |
|
38 |
8
|
ntrss2 |
|
39 |
7 10 38
|
syl2anc |
|
40 |
39
|
adantr |
|
41 |
37 40
|
sstrd |
|
42 |
28 36 41
|
reximssdv |
|
43 |
42
|
ralrimiva |
|
44 |
3 43
|
jca |
|
45 |
44
|
ex |
|
46 |
|
simpll2 |
|
47 |
46 6
|
syl |
|
48 |
|
simprl |
|
49 |
|
simprr |
|
50 |
|
opnneip |
|
51 |
47 48 49 50
|
syl3anc |
|
52 |
|
simpl1 |
|
53 |
52
|
ad2antrr |
|
54 |
53 31
|
syl |
|
55 |
|
simprl |
|
56 |
|
eqid |
|
57 |
56
|
neii1 |
|
58 |
54 55 57
|
syl2anc |
|
59 |
56
|
ntropn |
|
60 |
54 58 59
|
syl2anc |
|
61 |
|
simpll3 |
|
62 |
61
|
adantr |
|
63 |
|
toponuni |
|
64 |
53 63
|
syl |
|
65 |
62 64
|
eleqtrd |
|
66 |
65
|
snssd |
|
67 |
56
|
neiint |
|
68 |
54 66 58 67
|
syl3anc |
|
69 |
55 68
|
mpbid |
|
70 |
|
snssg |
|
71 |
62 70
|
syl |
|
72 |
69 71
|
mpbird |
|
73 |
56
|
ntrss2 |
|
74 |
54 58 73
|
syl2anc |
|
75 |
|
imass2 |
|
76 |
74 75
|
syl |
|
77 |
|
simprr |
|
78 |
76 77
|
sstrd |
|
79 |
|
eleq2 |
|
80 |
|
imaeq2 |
|
81 |
80
|
sseq1d |
|
82 |
79 81
|
anbi12d |
|
83 |
82
|
rspcev |
|
84 |
60 72 78 83
|
syl12anc |
|
85 |
84
|
rexlimdvaa |
|
86 |
51 85
|
embantd |
|
87 |
86
|
ex |
|
88 |
87
|
com23 |
|
89 |
88
|
exp4a |
|
90 |
89
|
ralimdv2 |
|
91 |
90
|
imdistanda |
|
92 |
|
iscnp |
|
93 |
91 92
|
sylibrd |
|
94 |
45 93
|
impbid |
|