Metamath Proof Explorer


Theorem iscnrm

Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis ist0.1 X = J
Assertion iscnrm J CNrm J Top x 𝒫 X J 𝑡 x Nrm

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 unieq j = J j = J
3 2 1 eqtr4di j = J j = X
4 3 pweqd j = J 𝒫 j = 𝒫 X
5 oveq1 j = J j 𝑡 x = J 𝑡 x
6 5 eleq1d j = J j 𝑡 x Nrm J 𝑡 x Nrm
7 4 6 raleqbidv j = J x 𝒫 j j 𝑡 x Nrm x 𝒫 X J 𝑡 x Nrm
8 df-cnrm CNrm = j Top | x 𝒫 j j 𝑡 x Nrm
9 7 8 elrab2 J CNrm J Top x 𝒫 X J 𝑡 x Nrm