Metamath Proof Explorer


Theorem iscnrm2

Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion iscnrm2 J TopOn X J CNrm x 𝒫 X J 𝑡 x Nrm

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 eqid J = J
3 2 iscnrm J CNrm J Top x 𝒫 J J 𝑡 x Nrm
4 3 baib J Top J CNrm x 𝒫 J J 𝑡 x Nrm
5 1 4 syl J TopOn X J CNrm x 𝒫 J J 𝑡 x Nrm
6 toponuni J TopOn X X = J
7 6 pweqd J TopOn X 𝒫 X = 𝒫 J
8 7 raleqdv J TopOn X x 𝒫 X J 𝑡 x Nrm x 𝒫 J J 𝑡 x Nrm
9 5 8 bitr4d J TopOn X J CNrm x 𝒫 X J 𝑡 x Nrm