Database
BASIC TOPOLOGY
Topology
Connectedness
isconn
Next ⟩
isconn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isconn
Description:
The predicate
J
is a connected topology .
(Contributed by
FL
, 17-Nov-2008)
Ref
Expression
Hypothesis
isconn.1
⊢
X
=
⋃
J
Assertion
isconn
⊢
J
∈
Conn
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
=
∅
X
Proof
Step
Hyp
Ref
Expression
1
isconn.1
⊢
X
=
⋃
J
2
id
⊢
j
=
J
→
j
=
J
3
fveq2
⊢
j
=
J
→
Clsd
⁡
j
=
Clsd
⁡
J
4
2
3
ineq12d
⊢
j
=
J
→
j
∩
Clsd
⁡
j
=
J
∩
Clsd
⁡
J
5
unieq
⊢
j
=
J
→
⋃
j
=
⋃
J
6
5
1
eqtr4di
⊢
j
=
J
→
⋃
j
=
X
7
6
preq2d
⊢
j
=
J
→
∅
⋃
j
=
∅
X
8
4
7
eqeq12d
⊢
j
=
J
→
j
∩
Clsd
⁡
j
=
∅
⋃
j
↔
J
∩
Clsd
⁡
J
=
∅
X
9
df-conn
⊢
Conn
=
j
∈
Top
|
j
∩
Clsd
⁡
j
=
∅
⋃
j
10
8
9
elrab2
⊢
J
∈
Conn
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
=
∅
X