Database
BASIC TOPOLOGY
Topology
Connectedness
isconn2
Next ⟩
connclo
Metamath Proof Explorer
Ascii
Unicode
Theorem
isconn2
Description:
The predicate
J
is a connected topology .
(Contributed by
Mario Carneiro
, 10-Mar-2015)
Ref
Expression
Hypothesis
isconn.1
⊢
X
=
⋃
J
Assertion
isconn2
⊢
J
∈
Conn
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
⊆
∅
X
Proof
Step
Hyp
Ref
Expression
1
isconn.1
⊢
X
=
⋃
J
2
1
isconn
⊢
J
∈
Conn
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
=
∅
X
3
eqss
⊢
J
∩
Clsd
⁡
J
=
∅
X
↔
J
∩
Clsd
⁡
J
⊆
∅
X
∧
∅
X
⊆
J
∩
Clsd
⁡
J
4
0opn
⊢
J
∈
Top
→
∅
∈
J
5
0cld
⊢
J
∈
Top
→
∅
∈
Clsd
⁡
J
6
4
5
elind
⊢
J
∈
Top
→
∅
∈
J
∩
Clsd
⁡
J
7
1
topopn
⊢
J
∈
Top
→
X
∈
J
8
1
topcld
⊢
J
∈
Top
→
X
∈
Clsd
⁡
J
9
7
8
elind
⊢
J
∈
Top
→
X
∈
J
∩
Clsd
⁡
J
10
6
9
prssd
⊢
J
∈
Top
→
∅
X
⊆
J
∩
Clsd
⁡
J
11
10
biantrud
⊢
J
∈
Top
→
J
∩
Clsd
⁡
J
⊆
∅
X
↔
J
∩
Clsd
⁡
J
⊆
∅
X
∧
∅
X
⊆
J
∩
Clsd
⁡
J
12
3
11
bitr4id
⊢
J
∈
Top
→
J
∩
Clsd
⁡
J
=
∅
X
↔
J
∩
Clsd
⁡
J
⊆
∅
X
13
12
pm5.32i
⊢
J
∈
Top
∧
J
∩
Clsd
⁡
J
=
∅
X
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
⊆
∅
X
14
2
13
bitri
⊢
J
∈
Conn
↔
J
∈
Top
∧
J
∩
Clsd
⁡
J
⊆
∅
X