Metamath Proof Explorer


Theorem isconn2

Description: The predicate J is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis isconn.1 X = J
Assertion isconn2 J Conn J Top J Clsd J X

Proof

Step Hyp Ref Expression
1 isconn.1 X = J
2 1 isconn J Conn J Top J Clsd J = X
3 eqss J Clsd J = X J Clsd J X X J Clsd J
4 0opn J Top J
5 0cld J Top Clsd J
6 4 5 elind J Top J Clsd J
7 1 topopn J Top X J
8 1 topcld J Top X Clsd J
9 7 8 elind J Top X J Clsd J
10 6 9 prssd J Top X J Clsd J
11 10 biantrud J Top J Clsd J X J Clsd J X X J Clsd J
12 3 11 bitr4id J Top J Clsd J = X J Clsd J X
13 12 pm5.32i J Top J Clsd J = X J Top J Clsd J X
14 2 13 bitri J Conn J Top J Clsd J X