Metamath Proof Explorer


Theorem iscph

Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses iscph.v V = Base W
iscph.h , ˙ = 𝑖 W
iscph.n N = norm W
iscph.f F = Scalar W
iscph.k K = Base F
Assertion iscph W CPreHil W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x

Proof

Step Hyp Ref Expression
1 iscph.v V = Base W
2 iscph.h , ˙ = 𝑖 W
3 iscph.n N = norm W
4 iscph.f F = Scalar W
5 iscph.k K = Base F
6 elin W PreHil NrmMod W PreHil W NrmMod
7 6 anbi1i W PreHil NrmMod F = fld 𝑠 K W PreHil W NrmMod F = fld 𝑠 K
8 df-3an W PreHil W NrmMod F = fld 𝑠 K W PreHil W NrmMod F = fld 𝑠 K
9 7 8 bitr4i W PreHil NrmMod F = fld 𝑠 K W PreHil W NrmMod F = fld 𝑠 K
10 9 anbi1i W PreHil NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
11 fvexd w = W Scalar w V
12 fvexd w = W f = Scalar w Base f V
13 simplr w = W f = Scalar w k = Base f f = Scalar w
14 simpll w = W f = Scalar w k = Base f w = W
15 14 fveq2d w = W f = Scalar w k = Base f Scalar w = Scalar W
16 15 4 eqtr4di w = W f = Scalar w k = Base f Scalar w = F
17 13 16 eqtrd w = W f = Scalar w k = Base f f = F
18 simpr w = W f = Scalar w k = Base f k = Base f
19 17 fveq2d w = W f = Scalar w k = Base f Base f = Base F
20 19 5 eqtr4di w = W f = Scalar w k = Base f Base f = K
21 18 20 eqtrd w = W f = Scalar w k = Base f k = K
22 21 oveq2d w = W f = Scalar w k = Base f fld 𝑠 k = fld 𝑠 K
23 17 22 eqeq12d w = W f = Scalar w k = Base f f = fld 𝑠 k F = fld 𝑠 K
24 21 ineq1d w = W f = Scalar w k = Base f k 0 +∞ = K 0 +∞
25 24 imaeq2d w = W f = Scalar w k = Base f k 0 +∞ = K 0 +∞
26 25 21 sseq12d w = W f = Scalar w k = Base f k 0 +∞ k K 0 +∞ K
27 14 fveq2d w = W f = Scalar w k = Base f norm w = norm W
28 27 3 eqtr4di w = W f = Scalar w k = Base f norm w = N
29 14 fveq2d w = W f = Scalar w k = Base f Base w = Base W
30 29 1 eqtr4di w = W f = Scalar w k = Base f Base w = V
31 14 fveq2d w = W f = Scalar w k = Base f 𝑖 w = 𝑖 W
32 31 2 eqtr4di w = W f = Scalar w k = Base f 𝑖 w = , ˙
33 32 oveqd w = W f = Scalar w k = Base f x 𝑖 w x = x , ˙ x
34 33 fveq2d w = W f = Scalar w k = Base f x 𝑖 w x = x , ˙ x
35 30 34 mpteq12dv w = W f = Scalar w k = Base f x Base w x 𝑖 w x = x V x , ˙ x
36 28 35 eqeq12d w = W f = Scalar w k = Base f norm w = x Base w x 𝑖 w x N = x V x , ˙ x
37 23 26 36 3anbi123d w = W f = Scalar w k = Base f f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
38 3anass F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
39 37 38 bitrdi w = W f = Scalar w k = Base f f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
40 12 39 sbcied w = W f = Scalar w [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
41 11 40 sbcied w = W [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
42 df-cph CPreHil = w PreHil NrmMod | [˙ Scalar w / f]˙ [˙Base f / k]˙ f = fld 𝑠 k k 0 +∞ k norm w = x Base w x 𝑖 w x
43 41 42 elrab2 W CPreHil W PreHil NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
44 anass W PreHil NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x W PreHil NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
45 43 44 bitr4i W CPreHil W PreHil NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
46 3anass W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x
47 10 45 46 3bitr4i W CPreHil W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K N = x V x , ˙ x