Step |
Hyp |
Ref |
Expression |
1 |
|
iscph.v |
|
2 |
|
iscph.h |
|
3 |
|
iscph.n |
|
4 |
|
iscph.f |
|
5 |
|
iscph.k |
|
6 |
|
elin |
|
7 |
6
|
anbi1i |
|
8 |
|
df-3an |
|
9 |
7 8
|
bitr4i |
|
10 |
9
|
anbi1i |
|
11 |
|
fvexd |
|
12 |
|
fvexd |
|
13 |
|
simplr |
|
14 |
|
simpll |
|
15 |
14
|
fveq2d |
|
16 |
15 4
|
eqtr4di |
|
17 |
13 16
|
eqtrd |
|
18 |
|
simpr |
|
19 |
17
|
fveq2d |
|
20 |
19 5
|
eqtr4di |
|
21 |
18 20
|
eqtrd |
|
22 |
21
|
oveq2d |
|
23 |
17 22
|
eqeq12d |
|
24 |
21
|
ineq1d |
|
25 |
24
|
imaeq2d |
|
26 |
25 21
|
sseq12d |
|
27 |
14
|
fveq2d |
|
28 |
27 3
|
eqtr4di |
|
29 |
14
|
fveq2d |
|
30 |
29 1
|
eqtr4di |
|
31 |
14
|
fveq2d |
|
32 |
31 2
|
eqtr4di |
|
33 |
32
|
oveqd |
|
34 |
33
|
fveq2d |
|
35 |
30 34
|
mpteq12dv |
|
36 |
28 35
|
eqeq12d |
|
37 |
23 26 36
|
3anbi123d |
|
38 |
|
3anass |
|
39 |
37 38
|
bitrdi |
|
40 |
12 39
|
sbcied |
|
41 |
11 40
|
sbcied |
|
42 |
|
df-cph |
|
43 |
41 42
|
elrab2 |
|
44 |
|
anass |
|
45 |
43 44
|
bitr4i |
|
46 |
|
3anass |
|
47 |
10 45 46
|
3bitr4i |
|