Metamath Proof Explorer


Theorem iscplgrnb

Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgruvtxb.v V = Vtx G
Assertion iscplgrnb G W G ComplGraph v V n V v n G NeighbVtx v

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V = Vtx G
2 1 iscplgr G W G ComplGraph v V v UnivVtx G
3 1 uvtxel v UnivVtx G v V n V v n G NeighbVtx v
4 3 a1i G W v UnivVtx G v V n V v n G NeighbVtx v
5 4 baibd G W v V v UnivVtx G n V v n G NeighbVtx v
6 5 ralbidva G W v V v UnivVtx G v V n V v n G NeighbVtx v
7 2 6 bitrd G W G ComplGraph v V n V v n G NeighbVtx v