Metamath Proof Explorer


Theorem iscrng

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g G = mulGrp R
Assertion iscrng R CRing R Ring G CMnd

Proof

Step Hyp Ref Expression
1 ringmgp.g G = mulGrp R
2 fveq2 r = R mulGrp r = mulGrp R
3 2 1 eqtr4di r = R mulGrp r = G
4 3 eleq1d r = R mulGrp r CMnd G CMnd
5 df-cring CRing = r Ring | mulGrp r CMnd
6 4 5 elrab2 R CRing R Ring G CMnd