Metamath Proof Explorer


Theorem iscrng2

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses ringcl.b B = Base R
ringcl.t · ˙ = R
Assertion iscrng2 R CRing R Ring x B y B x · ˙ y = y · ˙ x

Proof

Step Hyp Ref Expression
1 ringcl.b B = Base R
2 ringcl.t · ˙ = R
3 eqid mulGrp R = mulGrp R
4 3 iscrng R CRing R Ring mulGrp R CMnd
5 3 ringmgp R Ring mulGrp R Mnd
6 3 1 mgpbas B = Base mulGrp R
7 3 2 mgpplusg · ˙ = + mulGrp R
8 6 7 iscmn mulGrp R CMnd mulGrp R Mnd x B y B x · ˙ y = y · ˙ x
9 8 baib mulGrp R Mnd mulGrp R CMnd x B y B x · ˙ y = y · ˙ x
10 5 9 syl R Ring mulGrp R CMnd x B y B x · ˙ y = y · ˙ x
11 10 pm5.32i R Ring mulGrp R CMnd R Ring x B y B x · ˙ y = y · ˙ x
12 4 11 bitri R CRing R Ring x B y B x · ˙ y = y · ˙ x