Metamath Proof Explorer


Theorem iscss2

Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v V = Base W
cssss.c C = ClSubSp W
ocvcss.o ˙ = ocv W
Assertion iscss2 W PreHil S V S C ˙ ˙ S S

Proof

Step Hyp Ref Expression
1 cssss.v V = Base W
2 cssss.c C = ClSubSp W
3 ocvcss.o ˙ = ocv W
4 3 2 iscss W PreHil S C S = ˙ ˙ S
5 4 adantr W PreHil S V S C S = ˙ ˙ S
6 1 3 ocvocv W PreHil S V S ˙ ˙ S
7 eqss S = ˙ ˙ S S ˙ ˙ S ˙ ˙ S S
8 7 baib S ˙ ˙ S S = ˙ ˙ S ˙ ˙ S S
9 6 8 syl W PreHil S V S = ˙ ˙ S ˙ ˙ S S
10 5 9 bitrd W PreHil S V S C ˙ ˙ S S