Metamath Proof Explorer


Theorem iscusp

Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Assertion iscusp W CUnifSp W UnifSp c Fil Base W c CauFilU UnifSt W TopOpen W fLim c

Proof

Step Hyp Ref Expression
1 2fveq3 w = W Fil Base w = Fil Base W
2 2fveq3 w = W CauFilU UnifSt w = CauFilU UnifSt W
3 2 eleq2d w = W c CauFilU UnifSt w c CauFilU UnifSt W
4 fveq2 w = W TopOpen w = TopOpen W
5 4 oveq1d w = W TopOpen w fLim c = TopOpen W fLim c
6 5 neeq1d w = W TopOpen w fLim c TopOpen W fLim c
7 3 6 imbi12d w = W c CauFilU UnifSt w TopOpen w fLim c c CauFilU UnifSt W TopOpen W fLim c
8 1 7 raleqbidv w = W c Fil Base w c CauFilU UnifSt w TopOpen w fLim c c Fil Base W c CauFilU UnifSt W TopOpen W fLim c
9 df-cusp CUnifSp = w UnifSp | c Fil Base w c CauFilU UnifSt w TopOpen w fLim c
10 8 9 elrab2 W CUnifSp W UnifSp c Fil Base W c CauFilU UnifSt W TopOpen W fLim c