Metamath Proof Explorer


Theorem iscusp2

Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017)

Ref Expression
Hypotheses iscusp2.1 B = Base W
iscusp2.2 U = UnifSt W
iscusp2.3 J = TopOpen W
Assertion iscusp2 W CUnifSp W UnifSp c Fil B c CauFilU U J fLim c

Proof

Step Hyp Ref Expression
1 iscusp2.1 B = Base W
2 iscusp2.2 U = UnifSt W
3 iscusp2.3 J = TopOpen W
4 iscusp W CUnifSp W UnifSp c Fil Base W c CauFilU UnifSt W TopOpen W fLim c
5 1 fveq2i Fil B = Fil Base W
6 2 fveq2i CauFilU U = CauFilU UnifSt W
7 6 eleq2i c CauFilU U c CauFilU UnifSt W
8 3 oveq1i J fLim c = TopOpen W fLim c
9 8 neeq1i J fLim c TopOpen W fLim c
10 7 9 imbi12i c CauFilU U J fLim c c CauFilU UnifSt W TopOpen W fLim c
11 5 10 raleqbii c Fil B c CauFilU U J fLim c c Fil Base W c CauFilU UnifSt W TopOpen W fLim c
12 11 anbi2i W UnifSp c Fil B c CauFilU U J fLim c W UnifSp c Fil Base W c CauFilU UnifSt W TopOpen W fLim c
13 4 12 bitr4i W CUnifSp W UnifSp c Fil B c CauFilU U J fLim c