Metamath Proof Explorer


Theorem iscvlat

Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses iscvlat.b B = Base K
iscvlat.l ˙ = K
iscvlat.j ˙ = join K
iscvlat.a A = Atoms K
Assertion iscvlat K CvLat K AtLat p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p

Proof

Step Hyp Ref Expression
1 iscvlat.b B = Base K
2 iscvlat.l ˙ = K
3 iscvlat.j ˙ = join K
4 iscvlat.a A = Atoms K
5 fveq2 k = K Atoms k = Atoms K
6 5 4 eqtr4di k = K Atoms k = A
7 fveq2 k = K Base k = Base K
8 7 1 eqtr4di k = K Base k = B
9 fveq2 k = K k = K
10 9 2 eqtr4di k = K k = ˙
11 10 breqd k = K p k x p ˙ x
12 11 notbid k = K ¬ p k x ¬ p ˙ x
13 eqidd k = K p = p
14 fveq2 k = K join k = join K
15 14 3 eqtr4di k = K join k = ˙
16 15 oveqd k = K x join k q = x ˙ q
17 13 10 16 breq123d k = K p k x join k q p ˙ x ˙ q
18 12 17 anbi12d k = K ¬ p k x p k x join k q ¬ p ˙ x p ˙ x ˙ q
19 eqidd k = K q = q
20 15 oveqd k = K x join k p = x ˙ p
21 19 10 20 breq123d k = K q k x join k p q ˙ x ˙ p
22 18 21 imbi12d k = K ¬ p k x p k x join k q q k x join k p ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
23 8 22 raleqbidv k = K x Base k ¬ p k x p k x join k q q k x join k p x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
24 6 23 raleqbidv k = K q Atoms k x Base k ¬ p k x p k x join k q q k x join k p q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
25 6 24 raleqbidv k = K p Atoms k q Atoms k x Base k ¬ p k x p k x join k q q k x join k p p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
26 df-cvlat CvLat = k AtLat | p Atoms k q Atoms k x Base k ¬ p k x p k x join k q q k x join k p
27 25 26 elrab2 K CvLat K AtLat p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p