Metamath Proof Explorer


Theorem iscyg

Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
Assertion iscyg GCycGrpGGrpxBrannn·˙x=B

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 fveq2 g=GBaseg=BaseG
4 3 1 eqtr4di g=GBaseg=B
5 fveq2 g=Gg=G
6 5 2 eqtr4di g=Gg=·˙
7 6 oveqd g=Gngx=n·˙x
8 7 mpteq2dv g=Gnngx=nn·˙x
9 8 rneqd g=Grannngx=rannn·˙x
10 9 4 eqeq12d g=Grannngx=Basegrannn·˙x=B
11 4 10 rexeqbidv g=GxBasegrannngx=BasegxBrannn·˙x=B
12 df-cyg CycGrp=gGrp|xBasegrannngx=Baseg
13 11 12 elrab2 GCycGrpGGrpxBrannn·˙x=B