Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Cyclic groups
iscyg
Next ⟩
iscyggen
Metamath Proof Explorer
Ascii
Unicode
Theorem
iscyg
Description:
Definition of a cyclic group.
(Contributed by
Mario Carneiro
, 21-Apr-2016)
Ref
Expression
Hypotheses
iscyg.1
⊢
B
=
Base
G
iscyg.2
⊢
·
˙
=
⋅
G
Assertion
iscyg
⊢
G
∈
CycGrp
↔
G
∈
Grp
∧
∃
x
∈
B
ran
⁡
n
∈
ℤ
⟼
n
·
˙
x
=
B
Proof
Step
Hyp
Ref
Expression
1
iscyg.1
⊢
B
=
Base
G
2
iscyg.2
⊢
·
˙
=
⋅
G
3
fveq2
⊢
g
=
G
→
Base
g
=
Base
G
4
3
1
eqtr4di
⊢
g
=
G
→
Base
g
=
B
5
fveq2
⊢
g
=
G
→
⋅
g
=
⋅
G
6
5
2
eqtr4di
⊢
g
=
G
→
⋅
g
=
·
˙
7
6
oveqd
⊢
g
=
G
→
n
⋅
g
x
=
n
·
˙
x
8
7
mpteq2dv
⊢
g
=
G
→
n
∈
ℤ
⟼
n
⋅
g
x
=
n
∈
ℤ
⟼
n
·
˙
x
9
8
rneqd
⊢
g
=
G
→
ran
⁡
n
∈
ℤ
⟼
n
⋅
g
x
=
ran
⁡
n
∈
ℤ
⟼
n
·
˙
x
10
9
4
eqeq12d
⊢
g
=
G
→
ran
⁡
n
∈
ℤ
⟼
n
⋅
g
x
=
Base
g
↔
ran
⁡
n
∈
ℤ
⟼
n
·
˙
x
=
B
11
4
10
rexeqbidv
⊢
g
=
G
→
∃
x
∈
Base
g
ran
⁡
n
∈
ℤ
⟼
n
⋅
g
x
=
Base
g
↔
∃
x
∈
B
ran
⁡
n
∈
ℤ
⟼
n
·
˙
x
=
B
12
df-cyg
⊢
CycGrp
=
g
∈
Grp
|
∃
x
∈
Base
g
ran
⁡
n
∈
ℤ
⟼
n
⋅
g
x
=
Base
g
13
11
12
elrab2
⊢
G
∈
CycGrp
↔
G
∈
Grp
∧
∃
x
∈
B
ran
⁡
n
∈
ℤ
⟼
n
·
˙
x
=
B