Metamath Proof Explorer


Theorem iscyg2

Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B = Base G
iscyg.2 · ˙ = G
iscyg3.e E = x B | ran n n · ˙ x = B
Assertion iscyg2 G CycGrp G Grp E

Proof

Step Hyp Ref Expression
1 iscyg.1 B = Base G
2 iscyg.2 · ˙ = G
3 iscyg3.e E = x B | ran n n · ˙ x = B
4 1 2 iscyg G CycGrp G Grp x B ran n n · ˙ x = B
5 3 neeq1i E x B | ran n n · ˙ x = B
6 rabn0 x B | ran n n · ˙ x = B x B ran n n · ˙ x = B
7 5 6 bitri E x B ran n n · ˙ x = B
8 7 anbi2i G Grp E G Grp x B ran n n · ˙ x = B
9 4 8 bitr4i G CycGrp G Grp E