Metamath Proof Explorer


Theorem iscyggen

Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B = Base G
iscyg.2 · ˙ = G
iscyg3.e E = x B | ran n n · ˙ x = B
Assertion iscyggen X E X B ran n n · ˙ X = B

Proof

Step Hyp Ref Expression
1 iscyg.1 B = Base G
2 iscyg.2 · ˙ = G
3 iscyg3.e E = x B | ran n n · ˙ x = B
4 simpl x = X n x = X
5 4 oveq2d x = X n n · ˙ x = n · ˙ X
6 5 mpteq2dva x = X n n · ˙ x = n n · ˙ X
7 6 rneqd x = X ran n n · ˙ x = ran n n · ˙ X
8 7 eqeq1d x = X ran n n · ˙ x = B ran n n · ˙ X = B
9 8 3 elrab2 X E X B ran n n · ˙ X = B