Metamath Proof Explorer


Theorem iscyggen2

Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
iscyg3.e E=xB|rannn·˙x=B
Assertion iscyggen2 GGrpXEXByBny=n·˙X

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 iscyg3.e E=xB|rannn·˙x=B
4 1 2 3 iscyggen XEXBrannn·˙X=B
5 1 2 mulgcl GGrpnXBn·˙XB
6 5 3expa GGrpnXBn·˙XB
7 6 an32s GGrpXBnn·˙XB
8 7 fmpttd GGrpXBnn·˙X:B
9 frn nn·˙X:Brannn·˙XB
10 eqss rannn·˙X=Brannn·˙XBBrannn·˙X
11 10 baib rannn·˙XBrannn·˙X=BBrannn·˙X
12 8 9 11 3syl GGrpXBrannn·˙X=BBrannn·˙X
13 dfss3 Brannn·˙XyByrannn·˙X
14 eqid nn·˙X=nn·˙X
15 ovex n·˙XV
16 14 15 elrnmpti yrannn·˙Xny=n·˙X
17 16 ralbii yByrannn·˙XyBny=n·˙X
18 13 17 bitri Brannn·˙XyBny=n·˙X
19 12 18 bitrdi GGrpXBrannn·˙X=ByBny=n·˙X
20 19 pm5.32da GGrpXBrannn·˙X=BXByBny=n·˙X
21 4 20 bitrid GGrpXEXByBny=n·˙X