Metamath Proof Explorer


Theorem iscygodd

Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses iscygodd.1 B = Base G
iscygodd.o O = od G
iscygodd.3 φ G Grp
iscygodd.4 φ X B
iscygodd.5 φ O X = B
Assertion iscygodd φ G CycGrp

Proof

Step Hyp Ref Expression
1 iscygodd.1 B = Base G
2 iscygodd.o O = od G
3 iscygodd.3 φ G Grp
4 iscygodd.4 φ X B
5 iscygodd.5 φ O X = B
6 1 2 odcl X B O X 0
7 4 6 syl φ O X 0
8 5 7 eqeltrrd φ B 0
9 1 fvexi B V
10 hashclb B V B Fin B 0
11 9 10 ax-mp B Fin B 0
12 8 11 sylibr φ B Fin
13 eqid G = G
14 eqid x B | ran n n G x = B = x B | ran n n G x = B
15 1 13 14 2 cyggenod G Grp B Fin X x B | ran n n G x = B X B O X = B
16 3 12 15 syl2anc φ X x B | ran n n G x = B X B O X = B
17 4 5 16 mpbir2and φ X x B | ran n n G x = B
18 17 ne0d φ x B | ran n n G x = B
19 1 13 14 iscyg2 G CycGrp G Grp x B | ran n n G x = B
20 3 18 19 sylanbrc φ G CycGrp