Metamath Proof Explorer


Theorem isdomn2

Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses isdomn2.b B = Base R
isdomn2.t E = RLReg R
isdomn2.z 0 ˙ = 0 R
Assertion isdomn2 R Domn R NzRing B 0 ˙ E

Proof

Step Hyp Ref Expression
1 isdomn2.b B = Base R
2 isdomn2.t E = RLReg R
3 isdomn2.z 0 ˙ = 0 R
4 eqid R = R
5 1 4 3 isdomn R Domn R NzRing x B y B x R y = 0 ˙ x = 0 ˙ y = 0 ˙
6 eldifi x B 0 ˙ x B
7 2 1 4 3 isrrg x E x B y B x R y = 0 ˙ y = 0 ˙
8 7 baib x B x E y B x R y = 0 ˙ y = 0 ˙
9 6 8 syl x B 0 ˙ x E y B x R y = 0 ˙ y = 0 ˙
10 9 ralbiia x B 0 ˙ x E x B 0 ˙ y B x R y = 0 ˙ y = 0 ˙
11 dfss3 B 0 ˙ E x B 0 ˙ x E
12 isdomn5 x B y B x R y = 0 ˙ x = 0 ˙ y = 0 ˙ x B 0 ˙ y B x R y = 0 ˙ y = 0 ˙
13 10 11 12 3bitr4ri x B y B x R y = 0 ˙ x = 0 ˙ y = 0 ˙ B 0 ˙ E
14 13 anbi2i R NzRing x B y B x R y = 0 ˙ x = 0 ˙ y = 0 ˙ R NzRing B 0 ˙ E
15 5 14 bitri R Domn R NzRing B 0 ˙ E