Metamath Proof Explorer


Theorem isdomn4r

Description: A ring is a domain iff it is nonzero and the right cancellation law for multiplication holds. (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypotheses isdomn4r.b B = Base R
isdomn4r.0 0 ˙ = 0 R
isdomn4r.x · ˙ = R
Assertion isdomn4r R Domn R NzRing a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b

Proof

Step Hyp Ref Expression
1 isdomn4r.b B = Base R
2 isdomn4r.0 0 ˙ = 0 R
3 isdomn4r.x · ˙ = R
4 eqid opp r R = opp r R
5 4 1 opprbas B = Base opp r R
6 4 2 oppr0 0 ˙ = 0 opp r R
7 eqid opp r R = opp r R
8 5 6 7 isdomn4 opp r R Domn opp r R NzRing c B 0 ˙ a B b B c opp r R a = c opp r R b a = b
9 4 opprdomnb R Domn opp r R Domn
10 4 opprnzrb R NzRing opp r R NzRing
11 1 3 4 7 opprmul c opp r R a = a · ˙ c
12 1 3 4 7 opprmul c opp r R b = b · ˙ c
13 11 12 eqeq12i c opp r R a = c opp r R b a · ˙ c = b · ˙ c
14 13 imbi1i c opp r R a = c opp r R b a = b a · ˙ c = b · ˙ c a = b
15 14 3ralbii a B b B c B 0 ˙ c opp r R a = c opp r R b a = b a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b
16 ralrot3 a B b B c B 0 ˙ c opp r R a = c opp r R b a = b c B 0 ˙ a B b B c opp r R a = c opp r R b a = b
17 15 16 bitr3i a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b c B 0 ˙ a B b B c opp r R a = c opp r R b a = b
18 10 17 anbi12i R NzRing a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b opp r R NzRing c B 0 ˙ a B b B c opp r R a = c opp r R b a = b
19 8 9 18 3bitr4i R Domn R NzRing a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b