Metamath Proof Explorer


Theorem isdomn6

Description: A ring is a domain iff nonzero-divisors are all the nonzero elements. (Contributed by Thierry Arnoux, 6-May-2025)

Ref Expression
Hypotheses isdomn6.b B = Base R
isdomn6.t E = RLReg R
isdomn6.z 0 ˙ = 0 R
Assertion isdomn6 R Domn R NzRing B 0 ˙ = E

Proof

Step Hyp Ref Expression
1 isdomn6.b B = Base R
2 isdomn6.t E = RLReg R
3 isdomn6.z 0 ˙ = 0 R
4 1 2 3 isdomn2 R Domn R NzRing B 0 ˙ E
5 2 1 rrgss E B
6 5 a1i R NzRing E B
7 2 3 rrgnz R NzRing ¬ 0 ˙ E
8 ssdifsn E B 0 ˙ E B ¬ 0 ˙ E
9 6 7 8 sylanbrc R NzRing E B 0 ˙
10 sssseq E B 0 ˙ B 0 ˙ E B 0 ˙ = E
11 9 10 syl R NzRing B 0 ˙ E B 0 ˙ = E
12 11 pm5.32i R NzRing B 0 ˙ E R NzRing B 0 ˙ = E
13 4 12 bitri R Domn R NzRing B 0 ˙ = E