Metamath Proof Explorer


Theorem isdrng2

Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses isdrng2.b B = Base R
isdrng2.z 0 ˙ = 0 R
isdrng2.g G = mulGrp R 𝑠 B 0 ˙
Assertion isdrng2 R DivRing R Ring G Grp

Proof

Step Hyp Ref Expression
1 isdrng2.b B = Base R
2 isdrng2.z 0 ˙ = 0 R
3 isdrng2.g G = mulGrp R 𝑠 B 0 ˙
4 eqid Unit R = Unit R
5 1 4 2 isdrng R DivRing R Ring Unit R = B 0 ˙
6 oveq2 Unit R = B 0 ˙ mulGrp R 𝑠 Unit R = mulGrp R 𝑠 B 0 ˙
7 6 adantl R Ring Unit R = B 0 ˙ mulGrp R 𝑠 Unit R = mulGrp R 𝑠 B 0 ˙
8 7 3 eqtr4di R Ring Unit R = B 0 ˙ mulGrp R 𝑠 Unit R = G
9 eqid mulGrp R 𝑠 Unit R = mulGrp R 𝑠 Unit R
10 4 9 unitgrp R Ring mulGrp R 𝑠 Unit R Grp
11 10 adantr R Ring Unit R = B 0 ˙ mulGrp R 𝑠 Unit R Grp
12 8 11 eqeltrrd R Ring Unit R = B 0 ˙ G Grp
13 1 4 unitcl x Unit R x B
14 13 adantl R Ring G Grp x Unit R x B
15 difss B 0 ˙ B
16 eqid mulGrp R = mulGrp R
17 16 1 mgpbas B = Base mulGrp R
18 3 17 ressbas2 B 0 ˙ B B 0 ˙ = Base G
19 15 18 ax-mp B 0 ˙ = Base G
20 eqid 0 G = 0 G
21 19 20 grpidcl G Grp 0 G B 0 ˙
22 21 ad2antlr R Ring G Grp x Unit R 0 G B 0 ˙
23 eldifsn 0 G B 0 ˙ 0 G B 0 G 0 ˙
24 22 23 sylib R Ring G Grp x Unit R 0 G B 0 G 0 ˙
25 24 simprd R Ring G Grp x Unit R 0 G 0 ˙
26 simpll R Ring G Grp x Unit R R Ring
27 22 eldifad R Ring G Grp x Unit R 0 G B
28 simpr R Ring G Grp x Unit R x Unit R
29 eqid / r R = / r R
30 eqid R = R
31 1 4 29 30 dvrcan1 R Ring 0 G B x Unit R 0 G / r R x R x = 0 G
32 26 27 28 31 syl3anc R Ring G Grp x Unit R 0 G / r R x R x = 0 G
33 1 4 29 dvrcl R Ring 0 G B x Unit R 0 G / r R x B
34 26 27 28 33 syl3anc R Ring G Grp x Unit R 0 G / r R x B
35 1 30 2 ringrz R Ring 0 G / r R x B 0 G / r R x R 0 ˙ = 0 ˙
36 26 34 35 syl2anc R Ring G Grp x Unit R 0 G / r R x R 0 ˙ = 0 ˙
37 25 32 36 3netr4d R Ring G Grp x Unit R 0 G / r R x R x 0 G / r R x R 0 ˙
38 oveq2 x = 0 ˙ 0 G / r R x R x = 0 G / r R x R 0 ˙
39 38 necon3i 0 G / r R x R x 0 G / r R x R 0 ˙ x 0 ˙
40 37 39 syl R Ring G Grp x Unit R x 0 ˙
41 eldifsn x B 0 ˙ x B x 0 ˙
42 14 40 41 sylanbrc R Ring G Grp x Unit R x B 0 ˙
43 42 ex R Ring G Grp x Unit R x B 0 ˙
44 43 ssrdv R Ring G Grp Unit R B 0 ˙
45 eldifi x B 0 ˙ x B
46 45 adantl R Ring G Grp x B 0 ˙ x B
47 eqid inv g G = inv g G
48 19 47 grpinvcl G Grp x B 0 ˙ inv g G x B 0 ˙
49 48 adantll R Ring G Grp x B 0 ˙ inv g G x B 0 ˙
50 49 eldifad R Ring G Grp x B 0 ˙ inv g G x B
51 eqid r R = r R
52 1 51 30 dvdsrmul x B inv g G x B x r R inv g G x R x
53 46 50 52 syl2anc R Ring G Grp x B 0 ˙ x r R inv g G x R x
54 1 fvexi B V
55 difexg B V B 0 ˙ V
56 16 30 mgpplusg R = + mulGrp R
57 3 56 ressplusg B 0 ˙ V R = + G
58 54 55 57 mp2b R = + G
59 19 58 20 47 grplinv G Grp x B 0 ˙ inv g G x R x = 0 G
60 59 adantll R Ring G Grp x B 0 ˙ inv g G x R x = 0 G
61 eqid 1 R = 1 R
62 1 61 ringidcl R Ring 1 R B
63 1 30 61 ringlidm R Ring 1 R B 1 R R 1 R = 1 R
64 62 63 mpdan R Ring 1 R R 1 R = 1 R
65 64 adantr R Ring G Grp 1 R R 1 R = 1 R
66 simpr R Ring G Grp G Grp
67 4 61 1unit R Ring 1 R Unit R
68 67 adantr R Ring G Grp 1 R Unit R
69 44 68 sseldd R Ring G Grp 1 R B 0 ˙
70 19 58 20 grpid G Grp 1 R B 0 ˙ 1 R R 1 R = 1 R 0 G = 1 R
71 66 69 70 syl2anc R Ring G Grp 1 R R 1 R = 1 R 0 G = 1 R
72 65 71 mpbid R Ring G Grp 0 G = 1 R
73 72 adantr R Ring G Grp x B 0 ˙ 0 G = 1 R
74 60 73 eqtrd R Ring G Grp x B 0 ˙ inv g G x R x = 1 R
75 53 74 breqtrd R Ring G Grp x B 0 ˙ x r R 1 R
76 eqid opp r R = opp r R
77 76 1 opprbas B = Base opp r R
78 eqid r opp r R = r opp r R
79 eqid opp r R = opp r R
80 77 78 79 dvdsrmul x B inv g G x B x r opp r R inv g G x opp r R x
81 46 50 80 syl2anc R Ring G Grp x B 0 ˙ x r opp r R inv g G x opp r R x
82 1 30 76 79 opprmul inv g G x opp r R x = x R inv g G x
83 19 58 20 47 grprinv G Grp x B 0 ˙ x R inv g G x = 0 G
84 83 adantll R Ring G Grp x B 0 ˙ x R inv g G x = 0 G
85 84 73 eqtrd R Ring G Grp x B 0 ˙ x R inv g G x = 1 R
86 82 85 eqtrid R Ring G Grp x B 0 ˙ inv g G x opp r R x = 1 R
87 81 86 breqtrd R Ring G Grp x B 0 ˙ x r opp r R 1 R
88 4 61 51 76 78 isunit x Unit R x r R 1 R x r opp r R 1 R
89 75 87 88 sylanbrc R Ring G Grp x B 0 ˙ x Unit R
90 44 89 eqelssd R Ring G Grp Unit R = B 0 ˙
91 12 90 impbida R Ring Unit R = B 0 ˙ G Grp
92 91 pm5.32i R Ring Unit R = B 0 ˙ R Ring G Grp
93 5 92 bitri R DivRing R Ring G Grp