Step |
Hyp |
Ref |
Expression |
1 |
|
isdrng4.b |
|
2 |
|
isdrng4.0 |
|
3 |
|
isdrng4.1 |
|
4 |
|
isdrng4.x |
|
5 |
|
isdrng4.u |
|
6 |
|
isdrng4.r |
|
7 |
1 5 2
|
isdrng |
|
8 |
6
|
biantrurd |
|
9 |
7 8
|
bitr4id |
|
10 |
5 3
|
1unit |
|
11 |
6 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
12 13
|
eleqtrd |
|
15 |
|
eldifsni |
|
16 |
14 15
|
syl |
|
17 |
|
simpll |
|
18 |
13
|
eleq2d |
|
19 |
18
|
biimpar |
|
20 |
6
|
ad5antr |
|
21 |
1 5
|
unitcl |
|
22 |
21
|
ad5antlr |
|
23 |
|
simp-4r |
|
24 |
|
simplr |
|
25 |
|
simpllr |
|
26 |
|
simpr |
|
27 |
1 2 3 4 5 20 22 23 24 25 26
|
ringinveu |
|
28 |
27
|
oveq2d |
|
29 |
28 26
|
eqtr3d |
|
30 |
21
|
ad3antlr |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
5 3 31 32 33
|
isunit |
|
35 |
34
|
simprbi |
|
36 |
35
|
ad3antlr |
|
37 |
32 1
|
opprbas |
|
38 |
|
eqid |
|
39 |
37 33 38
|
dvdsr2 |
|
40 |
39
|
biimpa |
|
41 |
1 4 32 38
|
opprmul |
|
42 |
41
|
eqeq1i |
|
43 |
42
|
rexbii |
|
44 |
40 43
|
sylib |
|
45 |
|
oveq2 |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
cbvrexvw |
|
48 |
44 47
|
sylib |
|
49 |
30 36 48
|
syl2anc |
|
50 |
29 49
|
r19.29a |
|
51 |
|
simpr |
|
52 |
50 51
|
jca |
|
53 |
52
|
anasss |
|
54 |
21
|
adantl |
|
55 |
34
|
simplbi |
|
56 |
55
|
adantl |
|
57 |
1 31 4
|
dvdsr2 |
|
58 |
57
|
biimpa |
|
59 |
54 56 58
|
syl2anc |
|
60 |
53 59
|
reximddv |
|
61 |
17 19 60
|
syl2anc |
|
62 |
61
|
ralrimiva |
|
63 |
16 62
|
jca |
|
64 |
1 5
|
unitss |
|
65 |
64
|
a1i |
|
66 |
6
|
adantr |
|
67 |
|
simprl |
|
68 |
5 2 3
|
0unit |
|
69 |
68
|
necon3bbid |
|
70 |
69
|
biimpar |
|
71 |
66 67 70
|
syl2anc |
|
72 |
|
ssdifsn |
|
73 |
65 71 72
|
sylanbrc |
|
74 |
|
simplr |
|
75 |
74
|
eldifad |
|
76 |
|
simpr |
|
77 |
76
|
reximi |
|
78 |
77
|
adantl |
|
79 |
57
|
biimpar |
|
80 |
75 78 79
|
syl2anc |
|
81 |
|
simpl |
|
82 |
81
|
reximi |
|
83 |
82
|
adantl |
|
84 |
83 43
|
sylibr |
|
85 |
39
|
biimpar |
|
86 |
75 84 85
|
syl2anc |
|
87 |
80 86 34
|
sylanbrc |
|
88 |
87
|
ex |
|
89 |
88
|
ralimdva |
|
90 |
89
|
impr |
|
91 |
|
dfss3 |
|
92 |
90 91
|
sylibr |
|
93 |
73 92
|
eqssd |
|
94 |
63 93
|
impbida |
|
95 |
9 94
|
bitrd |
|