Metamath Proof Explorer


Theorem isdrngo1

Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G = 1 st R
isdivrng1.2 H = 2 nd R
isdivrng1.3 Z = GId G
isdivrng1.4 X = ran G
Assertion isdrngo1 R DivRingOps R RingOps H X Z × X Z GrpOp

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G = 1 st R
2 isdivrng1.2 H = 2 nd R
3 isdivrng1.3 Z = GId G
4 isdivrng1.4 X = ran G
5 df-drngo DivRingOps = g h | g h RingOps h ran g GId g × ran g GId g GrpOp
6 5 relopabiv Rel DivRingOps
7 1st2nd Rel DivRingOps R DivRingOps R = 1 st R 2 nd R
8 6 7 mpan R DivRingOps R = 1 st R 2 nd R
9 relrngo Rel RingOps
10 1st2nd Rel RingOps R RingOps R = 1 st R 2 nd R
11 9 10 mpan R RingOps R = 1 st R 2 nd R
12 11 adantr R RingOps H X Z × X Z GrpOp R = 1 st R 2 nd R
13 1 2 opeq12i G H = 1 st R 2 nd R
14 13 eqeq2i R = G H R = 1 st R 2 nd R
15 2 fvexi H V
16 isdivrngo H V G H DivRingOps G H RingOps H ran G GId G × ran G GId G GrpOp
17 15 16 ax-mp G H DivRingOps G H RingOps H ran G GId G × ran G GId G GrpOp
18 3 sneqi Z = GId G
19 4 18 difeq12i X Z = ran G GId G
20 19 19 xpeq12i X Z × X Z = ran G GId G × ran G GId G
21 20 reseq2i H X Z × X Z = H ran G GId G × ran G GId G
22 21 eleq1i H X Z × X Z GrpOp H ran G GId G × ran G GId G GrpOp
23 22 anbi2i G H RingOps H X Z × X Z GrpOp G H RingOps H ran G GId G × ran G GId G GrpOp
24 17 23 bitr4i G H DivRingOps G H RingOps H X Z × X Z GrpOp
25 eleq1 R = G H R DivRingOps G H DivRingOps
26 eleq1 R = G H R RingOps G H RingOps
27 26 anbi1d R = G H R RingOps H X Z × X Z GrpOp G H RingOps H X Z × X Z GrpOp
28 25 27 bibi12d R = G H R DivRingOps R RingOps H X Z × X Z GrpOp G H DivRingOps G H RingOps H X Z × X Z GrpOp
29 24 28 mpbiri R = G H R DivRingOps R RingOps H X Z × X Z GrpOp
30 14 29 sylbir R = 1 st R 2 nd R R DivRingOps R RingOps H X Z × X Z GrpOp
31 8 12 30 pm5.21nii R DivRingOps R RingOps H X Z × X Z GrpOp