Metamath Proof Explorer


Theorem isdrngo2

Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G = 1 st R
isdivrng1.2 H = 2 nd R
isdivrng1.3 Z = GId G
isdivrng1.4 X = ran G
isdivrng2.5 U = GId H
Assertion isdrngo2 R DivRingOps R RingOps U Z x X Z y X Z y H x = U

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G = 1 st R
2 isdivrng1.2 H = 2 nd R
3 isdivrng1.3 Z = GId G
4 isdivrng1.4 X = ran G
5 isdivrng2.5 U = GId H
6 1 2 3 4 isdrngo1 R DivRingOps R RingOps H X Z × X Z GrpOp
7 1 2 4 3 5 dvrunz R DivRingOps U Z
8 6 7 sylbir R RingOps H X Z × X Z GrpOp U Z
9 grporndm H X Z × X Z GrpOp ran H X Z × X Z = dom dom H X Z × X Z
10 9 adantl R RingOps H X Z × X Z GrpOp ran H X Z × X Z = dom dom H X Z × X Z
11 difss X Z X
12 xpss12 X Z X X Z X X Z × X Z X × X
13 11 11 12 mp2an X Z × X Z X × X
14 1 2 4 rngosm R RingOps H : X × X X
15 14 fdmd R RingOps dom H = X × X
16 13 15 sseqtrrid R RingOps X Z × X Z dom H
17 16 adantr R RingOps H X Z × X Z GrpOp X Z × X Z dom H
18 ssdmres X Z × X Z dom H dom H X Z × X Z = X Z × X Z
19 17 18 sylib R RingOps H X Z × X Z GrpOp dom H X Z × X Z = X Z × X Z
20 19 dmeqd R RingOps H X Z × X Z GrpOp dom dom H X Z × X Z = dom X Z × X Z
21 dmxpid dom X Z × X Z = X Z
22 20 21 eqtrdi R RingOps H X Z × X Z GrpOp dom dom H X Z × X Z = X Z
23 10 22 eqtrd R RingOps H X Z × X Z GrpOp ran H X Z × X Z = X Z
24 23 eleq2d R RingOps H X Z × X Z GrpOp x ran H X Z × X Z x X Z
25 24 biimpar R RingOps H X Z × X Z GrpOp x X Z x ran H X Z × X Z
26 eqid ran H X Z × X Z = ran H X Z × X Z
27 eqid inv H X Z × X Z = inv H X Z × X Z
28 26 27 grpoinvcl H X Z × X Z GrpOp x ran H X Z × X Z inv H X Z × X Z x ran H X Z × X Z
29 28 adantll R RingOps H X Z × X Z GrpOp x ran H X Z × X Z inv H X Z × X Z x ran H X Z × X Z
30 eqid GId H X Z × X Z = GId H X Z × X Z
31 26 30 27 grpolinv H X Z × X Z GrpOp x ran H X Z × X Z inv H X Z × X Z x H X Z × X Z x = GId H X Z × X Z
32 31 adantll R RingOps H X Z × X Z GrpOp x ran H X Z × X Z inv H X Z × X Z x H X Z × X Z x = GId H X Z × X Z
33 2 rngomndo R RingOps H MndOp
34 mndomgmid H MndOp H Magma ExId
35 33 34 syl R RingOps H Magma ExId
36 35 adantr R RingOps H X Z × X Z GrpOp H Magma ExId
37 11 4 sseqtri X Z ran G
38 2 1 rngorn1eq R RingOps ran G = ran H
39 37 38 sseqtrid R RingOps X Z ran H
40 39 adantr R RingOps H X Z × X Z GrpOp X Z ran H
41 1 rneqi ran G = ran 1 st R
42 4 41 eqtri X = ran 1 st R
43 42 2 5 rngo1cl R RingOps U X
44 43 adantr R RingOps H X Z × X Z GrpOp U X
45 eldifsn U X Z U X U Z
46 44 8 45 sylanbrc R RingOps H X Z × X Z GrpOp U X Z
47 grpomndo H X Z × X Z GrpOp H X Z × X Z MndOp
48 mndoismgmOLD H X Z × X Z MndOp H X Z × X Z Magma
49 47 48 syl H X Z × X Z GrpOp H X Z × X Z Magma
50 49 adantl R RingOps H X Z × X Z GrpOp H X Z × X Z Magma
51 eqid ran H = ran H
52 eqid H X Z × X Z = H X Z × X Z
53 51 5 52 exidresid H Magma ExId X Z ran H U X Z H X Z × X Z Magma GId H X Z × X Z = U
54 36 40 46 50 53 syl31anc R RingOps H X Z × X Z GrpOp GId H X Z × X Z = U
55 54 adantr R RingOps H X Z × X Z GrpOp x ran H X Z × X Z GId H X Z × X Z = U
56 32 55 eqtrd R RingOps H X Z × X Z GrpOp x ran H X Z × X Z inv H X Z × X Z x H X Z × X Z x = U
57 oveq1 y = inv H X Z × X Z x y H X Z × X Z x = inv H X Z × X Z x H X Z × X Z x
58 57 eqeq1d y = inv H X Z × X Z x y H X Z × X Z x = U inv H X Z × X Z x H X Z × X Z x = U
59 58 rspcev inv H X Z × X Z x ran H X Z × X Z inv H X Z × X Z x H X Z × X Z x = U y ran H X Z × X Z y H X Z × X Z x = U
60 29 56 59 syl2anc R RingOps H X Z × X Z GrpOp x ran H X Z × X Z y ran H X Z × X Z y H X Z × X Z x = U
61 25 60 syldan R RingOps H X Z × X Z GrpOp x X Z y ran H X Z × X Z y H X Z × X Z x = U
62 23 adantr R RingOps H X Z × X Z GrpOp x X Z ran H X Z × X Z = X Z
63 62 rexeqdv R RingOps H X Z × X Z GrpOp x X Z y ran H X Z × X Z y H X Z × X Z x = U y X Z y H X Z × X Z x = U
64 ovres y X Z x X Z y H X Z × X Z x = y H x
65 64 ancoms x X Z y X Z y H X Z × X Z x = y H x
66 65 eqeq1d x X Z y X Z y H X Z × X Z x = U y H x = U
67 66 rexbidva x X Z y X Z y H X Z × X Z x = U y X Z y H x = U
68 67 adantl R RingOps H X Z × X Z GrpOp x X Z y X Z y H X Z × X Z x = U y X Z y H x = U
69 63 68 bitrd R RingOps H X Z × X Z GrpOp x X Z y ran H X Z × X Z y H X Z × X Z x = U y X Z y H x = U
70 61 69 mpbid R RingOps H X Z × X Z GrpOp x X Z y X Z y H x = U
71 70 ralrimiva R RingOps H X Z × X Z GrpOp x X Z y X Z y H x = U
72 8 71 jca R RingOps H X Z × X Z GrpOp U Z x X Z y X Z y H x = U
73 1 fvexi G V
74 73 rnex ran G V
75 4 74 eqeltri X V
76 difexg X V X Z V
77 75 76 mp1i R RingOps U Z x X Z y X Z y H x = U X Z V
78 14 ffnd R RingOps H Fn X × X
79 78 adantr R RingOps U Z x X Z y X Z y H x = U H Fn X × X
80 fnssres H Fn X × X X Z × X Z X × X H X Z × X Z Fn X Z × X Z
81 79 13 80 sylancl R RingOps U Z x X Z y X Z y H x = U H X Z × X Z Fn X Z × X Z
82 ovres u X Z v X Z u H X Z × X Z v = u H v
83 82 adantl R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H X Z × X Z v = u H v
84 eldifi u X Z u X
85 eldifi v X Z v X
86 84 85 anim12i u X Z v X Z u X v X
87 1 2 4 rngocl R RingOps u X v X u H v X
88 87 3expb R RingOps u X v X u H v X
89 86 88 sylan2 R RingOps u X Z v X Z u H v X
90 89 adantlr R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H v X
91 oveq2 x = u y H x = y H u
92 91 eqeq1d x = u y H x = U y H u = U
93 92 rexbidv x = u y X Z y H x = U y X Z y H u = U
94 93 rspcv u X Z x X Z y X Z y H x = U y X Z y H u = U
95 94 imdistanri x X Z y X Z y H x = U u X Z y X Z y H u = U u X Z
96 eldifsn v X Z v X v Z
97 ssrexv X Z X y X Z y H u = U y X y H u = U
98 11 97 ax-mp y X Z y H u = U y X y H u = U
99 1 2 3 4 5 zerdivemp1x R RingOps u X y X y H u = U v X u H v = Z v = Z
100 98 99 syl3an3 R RingOps u X y X Z y H u = U v X u H v = Z v = Z
101 84 100 syl3an2 R RingOps u X Z y X Z y H u = U v X u H v = Z v = Z
102 101 3expb R RingOps u X Z y X Z y H u = U v X u H v = Z v = Z
103 102 imp R RingOps u X Z y X Z y H u = U v X u H v = Z v = Z
104 103 necon3d R RingOps u X Z y X Z y H u = U v X v Z u H v Z
105 104 impr R RingOps u X Z y X Z y H u = U v X v Z u H v Z
106 96 105 sylan2b R RingOps u X Z y X Z y H u = U v X Z u H v Z
107 106 an32s R RingOps v X Z u X Z y X Z y H u = U u H v Z
108 107 ancom2s R RingOps v X Z y X Z y H u = U u X Z u H v Z
109 95 108 sylan2 R RingOps v X Z x X Z y X Z y H x = U u X Z u H v Z
110 109 an42s R RingOps x X Z y X Z y H x = U u X Z v X Z u H v Z
111 110 adantlrl R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H v Z
112 eldifsn u H v X Z u H v X u H v Z
113 90 111 112 sylanbrc R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H v X Z
114 83 113 eqeltrd R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H X Z × X Z v X Z
115 114 ralrimivva R RingOps U Z x X Z y X Z y H x = U u X Z v X Z u H X Z × X Z v X Z
116 ffnov H X Z × X Z : X Z × X Z X Z H X Z × X Z Fn X Z × X Z u X Z v X Z u H X Z × X Z v X Z
117 81 115 116 sylanbrc R RingOps U Z x X Z y X Z y H x = U H X Z × X Z : X Z × X Z X Z
118 113 3adantr3 R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H v X Z
119 simpr3 R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z w X Z
120 118 119 ovresd R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H v H X Z × X Z w = u H v H w
121 82 3adant3 u X Z v X Z w X Z u H X Z × X Z v = u H v
122 121 adantl R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H X Z × X Z v = u H v
123 122 oveq1d R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H X Z × X Z v H X Z × X Z w = u H v H X Z × X Z w
124 ovres v X Z w X Z v H X Z × X Z w = v H w
125 124 3adant1 u X Z v X Z w X Z v H X Z × X Z w = v H w
126 125 adantl R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z v H X Z × X Z w = v H w
127 126 oveq2d R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H v H X Z × X Z w = u H v H w
128 simpr1 R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u X Z
129 fovrn H X Z × X Z : X Z × X Z X Z v X Z w X Z v H X Z × X Z w X Z
130 129 3adant3r1 H X Z × X Z : X Z × X Z X Z u X Z v X Z w X Z v H X Z × X Z w X Z
131 117 130 sylan R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z v H X Z × X Z w X Z
132 128 131 ovresd R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H X Z × X Z v H X Z × X Z w = u H v H X Z × X Z w
133 eldifi w X Z w X
134 84 85 133 3anim123i u X Z v X Z w X Z u X v X w X
135 1 2 4 rngoass R RingOps u X v X w X u H v H w = u H v H w
136 134 135 sylan2 R RingOps u X Z v X Z w X Z u H v H w = u H v H w
137 136 adantlr R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H v H w = u H v H w
138 127 132 137 3eqtr4d R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H X Z × X Z v H X Z × X Z w = u H v H w
139 120 123 138 3eqtr4d R RingOps U Z x X Z y X Z y H x = U u X Z v X Z w X Z u H X Z × X Z v H X Z × X Z w = u H X Z × X Z v H X Z × X Z w
140 43 anim1i R RingOps U Z U X U Z
141 140 45 sylibr R RingOps U Z U X Z
142 141 adantrr R RingOps U Z x X Z y X Z y H x = U U X Z
143 ovres U X Z u X Z U H X Z × X Z u = U H u
144 141 143 sylan R RingOps U Z u X Z U H X Z × X Z u = U H u
145 2 42 5 rngolidm R RingOps u X U H u = u
146 84 145 sylan2 R RingOps u X Z U H u = u
147 146 adantlr R RingOps U Z u X Z U H u = u
148 144 147 eqtrd R RingOps U Z u X Z U H X Z × X Z u = u
149 148 adantlrr R RingOps U Z x X Z y X Z y H x = U u X Z U H X Z × X Z u = u
150 93 rspcva u X Z x X Z y X Z y H x = U y X Z y H u = U
151 oveq1 y = z y H u = z H u
152 151 eqeq1d y = z y H u = U z H u = U
153 152 cbvrexvw y X Z y H u = U z X Z z H u = U
154 ovres z X Z u X Z z H X Z × X Z u = z H u
155 154 eqeq1d z X Z u X Z z H X Z × X Z u = U z H u = U
156 155 ancoms u X Z z X Z z H X Z × X Z u = U z H u = U
157 156 rexbidva u X Z z X Z z H X Z × X Z u = U z X Z z H u = U
158 157 biimpar u X Z z X Z z H u = U z X Z z H X Z × X Z u = U
159 153 158 sylan2b u X Z y X Z y H u = U z X Z z H X Z × X Z u = U
160 150 159 syldan u X Z x X Z y X Z y H x = U z X Z z H X Z × X Z u = U
161 160 ancoms x X Z y X Z y H x = U u X Z z X Z z H X Z × X Z u = U
162 161 adantll R RingOps x X Z y X Z y H x = U u X Z z X Z z H X Z × X Z u = U
163 162 adantlrl R RingOps U Z x X Z y X Z y H x = U u X Z z X Z z H X Z × X Z u = U
164 77 117 139 142 149 163 isgrpda R RingOps U Z x X Z y X Z y H x = U H X Z × X Z GrpOp
165 72 164 impbida R RingOps H X Z × X Z GrpOp U Z x X Z y X Z y H x = U
166 165 pm5.32i R RingOps H X Z × X Z GrpOp R RingOps U Z x X Z y X Z y H x = U
167 6 166 bitri R DivRingOps R RingOps U Z x X Z y X Z y H x = U