Metamath Proof Explorer


Theorem isdrngo3

Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G = 1 st R
isdivrng1.2 H = 2 nd R
isdivrng1.3 Z = GId G
isdivrng1.4 X = ran G
isdivrng2.5 U = GId H
Assertion isdrngo3 R DivRingOps R RingOps U Z x X Z y X y H x = U

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G = 1 st R
2 isdivrng1.2 H = 2 nd R
3 isdivrng1.3 Z = GId G
4 isdivrng1.4 X = ran G
5 isdivrng2.5 U = GId H
6 1 2 3 4 5 isdrngo2 R DivRingOps R RingOps U Z x X Z y X Z y H x = U
7 eldifi x X Z x X
8 difss X Z X
9 ssrexv X Z X y X Z y H x = U y X y H x = U
10 8 9 ax-mp y X Z y H x = U y X y H x = U
11 neeq1 y H x = U y H x Z U Z
12 11 biimparc U Z y H x = U y H x Z
13 3 4 1 2 rngolz R RingOps x X Z H x = Z
14 oveq1 y = Z y H x = Z H x
15 14 eqeq1d y = Z y H x = Z Z H x = Z
16 13 15 syl5ibrcom R RingOps x X y = Z y H x = Z
17 16 necon3d R RingOps x X y H x Z y Z
18 17 imp R RingOps x X y H x Z y Z
19 12 18 sylan2 R RingOps x X U Z y H x = U y Z
20 19 an4s R RingOps U Z x X y H x = U y Z
21 20 anassrs R RingOps U Z x X y H x = U y Z
22 pm3.2 y X y Z y X y Z
23 21 22 syl5com R RingOps U Z x X y H x = U y X y X y Z
24 eldifsn y X Z y X y Z
25 23 24 syl6ibr R RingOps U Z x X y H x = U y X y X Z
26 25 imdistanda R RingOps U Z x X y H x = U y X y H x = U y X Z
27 ancom y X y H x = U y H x = U y X
28 ancom y X Z y H x = U y H x = U y X Z
29 26 27 28 3imtr4g R RingOps U Z x X y X y H x = U y X Z y H x = U
30 29 reximdv2 R RingOps U Z x X y X y H x = U y X Z y H x = U
31 10 30 impbid2 R RingOps U Z x X y X Z y H x = U y X y H x = U
32 7 31 sylan2 R RingOps U Z x X Z y X Z y H x = U y X y H x = U
33 32 ralbidva R RingOps U Z x X Z y X Z y H x = U x X Z y X y H x = U
34 33 pm5.32da R RingOps U Z x X Z y X Z y H x = U U Z x X Z y X y H x = U
35 34 pm5.32i R RingOps U Z x X Z y X Z y H x = U R RingOps U Z x X Z y X y H x = U
36 6 35 bitri R DivRingOps R RingOps U Z x X Z y X y H x = U